Skip to main content
Log in

Aligning Fe2O3 photo-sheets on TiO2 nanofibers with hydrophilic and aerophobic surface for boosting photoelectrochemical performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) nanomaterials are critical to producing clean oxygenation or value-added chemical production by utilizing sustainable solar energy, but are always limited by simultaneous integration of architectural engineering and electronic regulation in one structure. Directed by density functional theory (DFT) calculations and finite element analysis (FEA), the bio-inspired ivy-like Fe2O3 heterostructures with enriched oxygen defects on TiO2 nanofibers are designed for boosting PEC performances. Ivy-like Fe2O3 photo-sheets remarkably enhanced the light harvesting by multiple light-mater interactions. The oxygen vacancies on Fe2O3 photo-sheets could aid the photons catching and promote the reactivity at active sites. More importantly, demonstrated by a well-designed dynamic observation, the abundant tip-edges within ivy-like Fe2O3 photo-sheets enabled the surface of heterostructure with hydrophilic and aerophobic properties. The functionalized surface allowed the rapid desorption of produced bubbles and thus ensured a high density of unoccupied active sites for electrolyte accessing. Featured by these attributes, the Fe2O3@TiO2 nanofibers delivered an excellent photocurrent of 40.8 mA/mg, high donor density (1.2 × 1018 cm−3), and rapid oxygen production rate (1 mmol/(L·h)). This work demonstrates a new strategy on nano-structural design for enhancing light-harvesting and making a hydrophilic/aerophobic surface on low-dimensional oxide nanomaterial, holding great potential on designing high-performance PEC devices for producing survival source gas, carbon-neutral fuel, and valued-chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, Y. G.; Gao, C.; Xiong, Y. J. Time-resolved X-ray absorption spectroscopy: Visualizing the time evolution of photophysics and photochemistry in photocatalytic solar energy conversion. Sol. RRL 2021, 5, 2000468.

    CAS  Google Scholar 

  2. Yang, J.; Wang, X.; Li, B.; Ma, L.; Shi, L.; Xiong, Y. J.; Xu, H. X. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 2017, 27, 1606497.

    Google Scholar 

  3. Bie, C. B.; Wang, L. X.; Yu, J. G. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574.

    CAS  Google Scholar 

  4. Shao, M. Z.; Liu, D. P.; Yan, B. L.; Feng, X. L.; Zhang, X. J.; Zhang, Y. Layer-by-layer electrodeposition of FTO/TiO2/CuxO/CeO2 (1 < x < 2) photocatalysts with high peroxidase-like activity by greatly enhanced singlet oxygen generation. Small Methods 2021, 5, 2100423.

    CAS  Google Scholar 

  5. Wei, D. X.; Tan, Y. B.; Wang, Y. Q.; Kong, T. T.; Shen, S. H.; Mao, S. S. Function-switchable metal/semiconductor junction enables efficient photocatalytic overall water splitting with selective water oxidation products. Sci. Bull. 2020, 65, 1389–1395.

    CAS  Google Scholar 

  6. Jayachitra, S.; Mahendiran, D.; Ravi, P.; Murugan, P.; Sathish, M. Highly conductive NiSe2 nanoparticle as a co-catalyst over TiO2 for enhanced photocatalytic hydrogen production. Appl. Catal. B:Environ. 2022, 307, 121159.

    CAS  Google Scholar 

  7. Ruan, X. W.; Cui, X. Q.; Cui, Y.; Fan, X. F.; Li, Z. Y.; Xie, T. F.; Ba, K. K.; Jia, G. R.; Zhang, H. Y.; Zhang, L. et al. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%. Adv. Energy Mater. 2022, 12, 2200298.

    CAS  Google Scholar 

  8. Gao, B. W.; Sun, M. X.; Ding, W.; Ding, Z. P.; Liu, W. Z. Decoration of γ-graphyne on TiO2 nanotube arrays: Improved photoelectrochemical and photoelectrocatalytic properties. Appl. Catal. B:Environ. 2021, 281, 119492.

    CAS  Google Scholar 

  9. Zhang, Y.; Wu, L. L.; Zhao, X. Y.; Zhao, Y. N.; Tan, H. Q.; Zhao, X.; Ma, Y. Y.; Zhao, Z.; Song, S. Y.; Wang, Y. H. et al. Leaf-mosaic-inspired vine-like graphitic carbon nitride showing high light absorption and efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801139.

    Google Scholar 

  10. Marwat, M. A.; Humayun, M.; Afridi, M. W.; Zhang, H. B.; Karim, M. R. A.; Ashtar, M.; Usman, M.; Waqar, S.; Ullah, H.; Wang, C. D. et al. Advanced catalysts for photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 12007–12031.

    CAS  Google Scholar 

  11. Angulo, A.; Van Der Linde, P.; Gardeniers, H.; Modestino, M.; Rivas, D. F. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 2020, 4, 555–579.

    CAS  Google Scholar 

  12. Sun, H. C.; Li, L. F.; Humayun, M.; Zhang, H. M.; Bo, Y. N.; Ao, X.; Xu, X. F.; Chen, K.; Ostrikov, K.; Huo, K. F. et al. Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh(OH)3/NiTe coaxial nanorod array electrode. Appl. Catal. B:Environ. 2022, 305, 121088.

    CAS  Google Scholar 

  13. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  14. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  15. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  16. Lin, L. F.; Xu, Q. R.; Zhang, Y.; Zhang, J. J.; Liang, Y. P.; Dong, S. Ferroelectric ferrimagnetic LiFe2F6: Charge-ordering-mediated magnetoelectricity. Phys. Rev. Mater. 2017, 1, 071401(R).

    Google Scholar 

  17. Chen, H. Y.; Xu, Y. F.; Kuang, D. B.; Su, C. Y. Recent advances in hierarchical macroporous composite structures for photoelectric conversion. Energy Environ. Sci. 2014, 7, 3887–3901.

    CAS  Google Scholar 

  18. Einert, M.; Ostermann, R.; Weller, T.; Zellmer, S.; Garnweitner, G.; Smarsly, B. M.; Marschall, R. Hollow α-Fe2O3 nanofibres for solar water oxidation: Improving the photoelectrochemical performance by formation of α-Fe2O3/ITO-composite photoanodes. J. Mater. Chem. A 2016, 4, 18444–18456.

    CAS  Google Scholar 

  19. Wang, C. W.; Yang, S.; Fang, W. Q.; Liu, P. R.; Zhao, H. J.; Yang, H. G. Engineered hematite mesoporous single crystals drive drastic enhancement in solar water splitting. Nano Lett. 2016, 16, 427–433.

    Google Scholar 

  20. Feng, F.; Li, C.; Jian, J.; Qiao, X. K.; Wang, H. Q.; Jia, L. C. Boosting hematite photoelectrochemical water splitting by decoration of TiO2 at the grain boundaries. Chem. Eng. J. 2019, 368, 959–967.

    CAS  Google Scholar 

  21. Liu, J.; Ma, N. K.; Wu, W.; He, Q. G. Recent progress on photocatalytic heterostructures with full solar spectral responses. Chem. Eng. J. 2020, 393, 124719.

    CAS  Google Scholar 

  22. Finger, L. W.; Hazen, R. M. Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. J. Appl. Phys. 1980, 51, 5362–5367.

    CAS  Google Scholar 

  23. Noh, M. F. M.; Ullah, H.; Arzaee, N. A.; Ab Halim, A.; Rahim, M. A. F. A.; Mohamed, N. A.; Safaei, J.; Nasir, S. N. F. M.; Wang, G. X.; Teridi, M. A. M. Rapid fabrication of oxygen defective α-Fe2O3 (110) for enhanced photoelectrochemical activities. Dalton Trans. 2020, 49, 12037–12048.

    Google Scholar 

  24. Zhang, Z. K.; Gao, Z. H.; Liu, H. Y.; Abanades, S.; Lu, H. F. High photothermally active Fe2O3 film for CO2 photoreduction with H2O driven by solar light. ACS Appl. Energy Mater. 2019, 2, 8376–8380.

    CAS  Google Scholar 

  25. Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632–635.

    CAS  Google Scholar 

  26. Ren, K.; Yin, P. F.; Zhou, Y. Z.; Cao, X. Z.; Dong, C. K.; Cui, L.; Liu, H.; Du, X. W. Localized defects on copper sulfide surface for enhanced plasmon resonance and water splitting. Small 2017, 13, 1700867.

    Google Scholar 

  27. Zhan, Q.; Wu, Y. N.; Wang, Y. P.; Liu, S. T.; Meng, X. Y.; Sun, Y. M.; Dai, Y. Q. Graphene-based modulation on the hierarchical growth of Al2O3 heterojunctions outside TiO2 nanofibers via a surfactant-free approach. Compos. Commun. 2020, 21, 100394.

    Google Scholar 

  28. Fu, W. L.; Liu, K.; Zou, X. X.; Xu, W. L.; Zhao, J. W.; Zhu, M. Y.; Ramakrishna, S.; Sun, Y. M.; Dai, Y. Q. Surface engineering of defective hematite nanostructures coupled by graphene sheets with enhanced photoelectrochemical performance. ACS Sustainable Chem. Eng. 2019, 7, 12750–12759.

    CAS  Google Scholar 

  29. Zhang, X. L.; Zhang, L. J.; Li, Y. C.; Di, L. B. Atmospheric-pressure cold plasma for fabrication of anatase-rutile mixed TiO2 with the assistance of ionic liquid. Catal. Today 2015, 256, 215–220.

    CAS  Google Scholar 

  30. Meng, X. Y.; Xu, W. L.; Li, Z. H.; Yang, J. H.; Zhao, J. W.; Zou, X. X.; Sun, Y. M.; Dai, Y. Q. Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purification. Adv. Fiber Mater. 2020, 2, 93–104.

    CAS  Google Scholar 

  31. Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614.

    CAS  Google Scholar 

  32. Wu, Y. N.; Sun, Y. B.; Fu, W. L.; Meng, X. Y.; Zhu, M. Y.; Ramakrishna, S.; Dai, Y. Q. Graphene-based modulation on the growth of urchin-like Na2Ti3O7 microspheres for photothermally enhanced H2 generation from ammonia borane. ACS Appl. Nano Mater. 2020, 3, 2713–2722.

    CAS  Google Scholar 

  33. Li, Y. G.; Wei, X. L.; Zhu, B. W.; Wang, H.; Tang, Y. X.; Sum, T. C.; Chen, X. D. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: Facile synthesis and enhanced photoelectrochemical performance. Nanoscale 2016, 8, 11284–11290.

    CAS  Google Scholar 

  34. Yi, S. S.; Wang, Z. Y.; Li, H. M.; Zafar, Z.; Zhang, Z. T.; Zhang, L. Y.; Chen, D. L.; Liu, Z. Y.; Yue, X. Z. Coupling effects of indium oxide layer on hematite enabling efficient photoelectrochemical water splitting. Appl. Catal. B:Environ. 2021, 283, 119649.

    CAS  Google Scholar 

  35. Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

    Google Scholar 

  36. Lv, N.; Li, Y. Y.; Huang, Z. L.; Li, T.; Ye, S. Y.; Dionysiou, D. D.; Song, X. L. Synthesis of GO/TiO2/Bi2WO6 nanocomposites with enhanced visible light photocatalytic degradation of ethylene. Appl. Catal. B: Environ. 2019, 246, 303–311.

    CAS  Google Scholar 

  37. Kim, J. H.; Seo, S.; Lee, J. H.; Choi, H.; Kim, S.; Piao, G.; Kim, Y. R.; Park, B.; Lee, J.; Jung, Y. et al. Efficient and stable perovskite-based photocathode for photoelectrochemical hydrogen production. Adv. Funct. Mater. 2021, 31, 2008277.

    CAS  Google Scholar 

  38. Nguyen, T. B.; Huang, C. P.; Doong, R. A. Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. Sci. Total Environ. 2019, 646, 745–756.

    CAS  Google Scholar 

  39. Wang, M. H.; Yin, H. S.; Zhou, Y. L.; Sui, C.; Wang, Y.; Meng, X. J.; Waterhouse, G. I. N.; Ai, S. Y. Photoelectrochemical biosensor for microRNA detection based on a MoS2/g-C3N4/black TiO2 heterojunction with Histostar@AuNPs for signal amplification. Biosens. Bioelectron. 2019, 128, 137–143.

    CAS  Google Scholar 

  40. Zhang, H. J.; Chen, G. H.; Bahnemann, D. W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121.

    CAS  Google Scholar 

  41. Chahrour, K. M.; Yam, F. K.; Eid, A. M. Water-splitting properties of bi-phased TiO2 nanotube arrays subjected to high-temperature annealing. Ceram. Int. 2020, 46, 21471–21481.

    CAS  Google Scholar 

  42. Rahman, G.; Joo, O. S. Electrodeposited nanostructured α-Fe2O3 thin films for solar water splitting: Influence of Pt doping on photoelectrochemical performance. Mater. Chem. Phys. 2013, 140, 316–322.

    CAS  Google Scholar 

  43. Bai, S. L.; Yang, X. J.; Liu, C. Y.; Xiang, X.; Luo, R. X.; He, J.; Chen, A. F. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustainable Chem. Eng. 2018, 6, 12906–12913.

    CAS  Google Scholar 

  44. Liu, T. X.; Wang, Y.; Liu, C. X.; Li, X. M.; Cheng, K.; Wu, Y. D.; Fang, L. P.; Li, F. B.; Liu, C. S. Conduction band of hematite can mediate cytochrome reduction by Fe(II) under dark and anoxic conditions. Environ. Sci. Technol. 2020, 54, 4810–4819.

    CAS  Google Scholar 

  45. Cho, I. S.; Logar, M.; Lee, C. H.; Cai, L. L.; Prinz, F. B.; Zheng, X. L. Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. Nano Lett. 2014, 14, 24–31.

    CAS  Google Scholar 

  46. Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat Commun. 2020, 11, 3028.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21975042), the Project of Six Talents Climax Foundation of Jiangsu (No. XCL-082), the Innovation Platform Project Supported by Jiangsu Province (No. 6907041203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqian Dai.

Electronic supplementary material

12274_2022_4893_MOESM1_ESM.pdf

Aligning Fe2O3 photo-sheets on TiO2 nanofibers with hydrophilic and aerophobic surface for boosting photoelectrochemical performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Zhan, Q., Wu, Y. et al. Aligning Fe2O3 photo-sheets on TiO2 nanofibers with hydrophilic and aerophobic surface for boosting photoelectrochemical performance. Nano Res. 16, 4178–4187 (2023). https://doi.org/10.1007/s12274-022-4893-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4893-2

Keywords

Navigation