Skip to main content
Log in

The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

LaMnO3 perovskite has great potential in microwave absorption at high temperature due to its complex doping effect and super stability. The current research mainly focuses on the doping ratio regulation, while the mechanism of doping effect at high temperature is still lack of sufficient investigation. In this work, La1−xSrxMn1−yFeyO3 (LaMnO3, La0.7Sr0.3MnO3, and La0.7Sr0.3Mn0.8Fe0.2O3) nanostructures with different doping sites were successfully prepared by the solid phase reaction method. Then, the high temperature dielectric test samples were obtained by mixing with cordierite (2MgO·2Al2O3·5SiO2 (MAS)). The results showed that the temperature dependence of Mn ion spin state had a significant impact on the high temperature dielectric behavior of La1−xSrxMn1−yFeyO3. Particularly, when the thickness is only 1.9 mm, La0.7Sr0.3Mn0.8Fe0.2O3/MAS can achieve the widest bandwidth of 4.2 GHz covered the entire X-band (8.2–12.4 GHz) and a minimum reflection loss (RL) value of −17.99 dB at 500 °C. In order to improve the operating temperature of La0.7Sr0.3Mn0.8Fe0.2O3/MAS, a cellular array structure was designed by using computer simulation technology (CST) software to introduce magnetic loss. When the outer length of the hexagon is 1 mm and the coating thickness is 1.9 mm, the widest bandwidth covers the X-band and the minimum RL value is −15.35 dB at 800 °C. Therefore, La0.7Sr0.3Mn0.8Fe0.2O3 has a great prospect as an efficient high temperature microwave absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

    Article  CAS  Google Scholar 

  2. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx−(Fe3O4/polyimide) composite films with janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    Article  CAS  Google Scholar 

  3. Hu, Y.; Huang, D. Q.; Shi, Y. Q.; Zhang, Y.; He, S.; Ding, H. Y. Research progress of high temperature microwave-absorbing ceramic matrix composites. J. Aeronaut. Mater. 2019, 39, 1–12.

    CAS  Google Scholar 

  4. Hou, T. Q.; Wang, B. B.; Jia, Z. R.; Wu, H. J.; Lan, D.; Huang, Z. Y.; Feng, A. L.; Ma, M. L.; Wu, G. L. A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. J. Mater. Sci. Mater. Electron. 2019, 30, 10961–10984.

    Article  CAS  Google Scholar 

  5. Jia, Z. R.; Lin, K. J.; Wu, G. L.; Xing, H.; Wu, H. J. Recent progresses of high-temperature microwave-absorbing materials. Nano 2018, 13, 1830005.

    Article  CAS  Google Scholar 

  6. Mouchon, E.; Colomban, P. Microwave absorbent: Preparation, mechanical properties and r. f. -microwave conductivity of SiC (and/or mullite) fibre reinforced nasicon matrix composites. J. Mater. Sci. 1996, 31, 323–334.

    Article  CAS  Google Scholar 

  7. Saleem, M. I.; Yang, S. Y.; Batool, A.; Sulaman, M.; Veeramalai, C. P.; Jiang, Y. R.; Tang, Y.; Cui, Y. Y.; Tang, L. B.; Zou, B. S. CsPbI3 nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors. J. Mater. Sci. Technol. 2021, 75, 196–204.

    Article  CAS  Google Scholar 

  8. Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L. T.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 2017, 10, 1107–1114.

    Article  CAS  Google Scholar 

  9. Bally, M. A. A.; Khan, F. A. Structural, dielectric and magnetic properties of La0.55Sr0.45MnO3 polycrystalline perovskite. J. Magn. Magn. Mater. 2020, 509, 166897.

    Article  CAS  Google Scholar 

  10. Yang, Z. N.; Luo, F.; Xu, J. S.; Zhou, W. C.; Zhu, D. M. Dielectric and microwave absorption properties of LaSrMnO3/Al2O3 ceramic coatings fabricated by atmospheric plasma spraying. J. Alloys Compd. 2016, 662, 607–611.

    Article  CAS  Google Scholar 

  11. Khan, M. S.; Kim, H. J.; Taniguchi, T.; Ebina, Y.; Sasaki, T.; Osada, M. Layer-by-layer engineering of two-dimensional perovskite nanosheets for tailored microwave dielectrics. Appl. Phys. Exp. 2017, 10, 091501.

    Article  Google Scholar 

  12. Gao, L.; Zhang, R. D.; Wei, C. K.; Yin, Y. C.; Zhang, H. The dielectric and microwave absorption properties variation with temperature of La0.5Sr0.5CoO3 ceramics and improved microwave absorption by FSS. Ceram. Int. 2021, 47, 26430–26437.

    Article  CAS  Google Scholar 

  13. Fauziyah, I.; Kurniawan, B.; Yandra, E. P. The effect incorporation of Ni = 0.05 at Mn site on microwave absorption properties of La0.67Sr0.33MnO3 material. J. Phys. Conf. Ser. 2018, 983, 012019.

    Article  Google Scholar 

  14. Reshi, H. A.; Singh, A. P.; Pillai, S.; Yadav, R. S.; Dhawan, S. K.; Shelke, V. Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range. J. Mater. Chem. C 2015, 3, 820–827.

    Article  CAS  Google Scholar 

  15. Flores-Lasluisa, J. X.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. Structural and morphological alterations induced by cobalt substitution in lamno3 perovskites. J. Colloid Interface Sci. 2019, 556, 658–666.

    Article  CAS  Google Scholar 

  16. Hozoi, L.; De Vries, A. H.; Broer, R. X-ray spectroscopy at the Mn k edge in LaMnO3:An ab initio study. Phys. Rev. B 2001, 64, 165104.

    Article  Google Scholar 

  17. Wang, K. P.; Ma, Y. C.; Betzler, K. Defect-induced spin deterioration of La0.64Sr0.36MnO3: Ab initio study. Phys. Rev. B 2007, 76, 144431.

    Article  Google Scholar 

  18. Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable mxene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

    Article  CAS  Google Scholar 

  19. Hou, T. Q.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Liu, X. H.; Lv, H. L.; Wu, G. L. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J. Mater. Sci. Technol. 2021, 68, 61–69.

    Article  CAS  Google Scholar 

  20. Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Zhang, B. S.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511.

    Article  CAS  Google Scholar 

  21. Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

    Article  CAS  Google Scholar 

  22. Zhao, Y.; Hao, L. L.; Zhang, X. D.; Tan, S. J.; Li, H. H.; Zheng, J.; Ji, G. B. A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect. Small Sci. 2022, 2, 2100077.

    Article  CAS  Google Scholar 

  23. Khan, T. T.; Ur, S. C. Thermoelectric properties of the perovskite-type oxide SrTi1−xNbxO3 synthesized by solid-state reaction method. Electron. Mater. Lett. 2018, 14, 336–341.

    Article  CAS  Google Scholar 

  24. Wang, F.; Gu, W. H.; Chen, J. B.; Wu, Y.; Zhou, M.; Tang, S. L.; Cao, X. Z.; Zhang, P.; Ji, G. B. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 2022, 15, 3720–3728.

    Article  CAS  Google Scholar 

  25. Zhu, R. Q.; Li, Z. Y.; Deng, G.; Yu, Y. H.; Shui, J. L.; Yu, R. H.; Pan, C. F.; Liu, X. F. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700.

    Article  CAS  Google Scholar 

  26. Xiao, Y.; Huang, H. X.; Liang, D. M.; Wang, C. Electrocatalytic properties and modification of La0.6Ca0.4Co1−xMnxO3 (x = 0–0.9) perovskite-type oxides. Chem. Phys. Lett. 2020, 738, 136846.

    Article  CAS  Google Scholar 

  27. Deka, D. J.; Kim, J.; Gunduz, S.; Jain, D.; Shi, Y. J.; Miller, J. T.; Co, A. C.; Ozkan, U. S. Coke formation during high-temperature CO2 electrolysis over AFeO3 (A = La/Sr) cathode: Effect of A-site metal segregation. Appl. Catal., B Environ. 2021, 283, 119642.

    Article  CAS  Google Scholar 

  28. Zhang, G.; Liu, G.; Wang, L. Z.; Irvine, J. T. S. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 2016, 45, 5951–5984.

    Article  CAS  Google Scholar 

  29. Thenmozhi, N.; Sasikumar, S.; Sonai, S.; Saravanan, R. Electronic structure and chemical bonding in La1−xSrxMnO3 perovskite ceramics. Mater. Res. Express 2017, 4, 046103.

    Article  Google Scholar 

  30. Cai, C. K.; Xie, M. Y.; Xue, K.; Shi, Y.; Li, S. T.; Liu, Y. Y.; An, S. L.; Yang, H. Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells. Nano Res. 2022, 15, 3264–3272.

    Article  CAS  Google Scholar 

  31. Hemberger, J.; Krimmel, A.; Kurz, T.; Von Nidda, H. A. K.; Ivanov, V. Y.; Mukhin, A. A.; Balbashov, A. M.; Loidl, A. Structural, magnetic, and electrical properties of single-crystalline La1−xSrxMnO3 (0.4 < x < 0.85). Phys. Rev. B 2002, 66, 094410.

    Article  Google Scholar 

  32. Aguado, F.; Rodriguez, F.; Núñez, P. Pressure-induced Jahn-Teller suppression and simultaneous high-spin to low-spin transition in the layered perovskite CsMnF4. Phys. Rev. B 2007, 76, 094417.

    Article  Google Scholar 

  33. Zener, C. Interaction between the d-shells in the transition metals. III. Calculation of the weiss factors in Fe, Co, and Ni. Phys. Rev. 1951, 83, 299–301.

    Article  CAS  Google Scholar 

  34. Zhu, H. Y.; Zhang, P. F.; Dai, S. Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 2015, 5, 6370–6385.

    Article  CAS  Google Scholar 

  35. Uzelac, M.; Mastropierro, P.; De Tullio, M.; Borilovic, I.; Tarrés, M.; Kennedy, A. R.; Aromí, G.; Hevia, E. Tandem Mn-I exchange and homocoupling processes mediated by a synergistically operative lithium manganate. Angew. Chem., Int. Ed. 2021, 60, 3247–3253.

    Article  CAS  Google Scholar 

  36. Zhao, D. Y.; Yang, Y. X.; Gao, Z. N.; Tian, Y.; Zhang, J.; Jiang, Z.; Li, X. G. A-site defects in LaSrMnO3 perovskite-based catalyst promoting NOx storage and reduction for lean-burn exhausts. J. Rare Earths 2021, 39, 959–968.

    Article  CAS  Google Scholar 

  37. Wang, F.; Gu, W. H.; Chen, J. B.; Huang, Q. Q.; Han, M. Y.; Wang, G. H.; Ji, G. B. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol. 2022, 105, 92–100.

    Article  Google Scholar 

  38. Meng, F. B.; Wang, H. G.; Wei, W.; Chen, Z. J.; Li, T.; Li, C. Y.; Xuan, Y.; Zhou, Z. W. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res. 2018, 11, 2847–2861.

    Article  CAS  Google Scholar 

  39. Li, Y.; Cao, M. S.; Wang, D. W.; Yuan, J. High-efficiency and dynamic stable electromagnetic wave attenuation for la doped bismuth ferrite at elevated temperature and gigahertz frequency. RSC Adv. 2015, 5, 77184–77191.

    Article  CAS  Google Scholar 

  40. Calame, J. P.; Battat, J. Narrowband microwave dielectric resonance and negative permittivity behavior in hydrogen-fired Al2O3−CuO composites. J. Am. Ceram. Soc. 2006, 89, 3865–3867.

    Article  CAS  Google Scholar 

  41. Asakura, D.; Nanba, Y.; Okubo, M.; Mizuno, Y.; Niwa, H.; Oshima, M.; Zhou, H. S.; Okada, K.; Harada, Y. Distinguishing between high- and low-spin states for divalent Mn in Mn-based prussian blue analogue by high-resolution soft X-ray emission spectroscopy. J. Phys. Chem. Lett. 2014, 5, 4008–4013.

    Article  CAS  Google Scholar 

  42. Kamata, H.; Yonemura, Y.; Mizusaki, J.; Tagawa, H.; Naraya, K.; Sasamoto, T. High temperature electrical properties of the perovskite-type oxide La1−xSrxMnO3−d. J. Phys. Chem. Solids 1995, 56, 943–950.

    Article  CAS  Google Scholar 

  43. Abbate, M.; Fuggle, J. C.; Fujimori, A.; Tjeng, L. H.; Chen, C. T.; Potze, R.; Sawatzky, G. A.; Eisaki, H.; Uchida, S. Electronic structure and spin-state transition of LaCoO3. Phys. Rev. B 1993, 47, 16124–16130.

    Article  CAS  Google Scholar 

  44. Wu, D.; Chen, G. D.; Ge, C. Y.; Hu, Z. P.; He, X. H.; Li, X. G. DFT+U analysis on stability of low-index facets in hexagonal LaCoO3 perovskite:Effect of Co3+ spin states. Chin. J. Chem. Phys. 2017, 30, 295–302.

    Article  CAS  Google Scholar 

  45. Hueso, J. L.; Holgado, J. P.; Pereñíguez, R.; Mun, S.; Salmeron, M.; Caballero, A. Chemical and electronic characterization of cobalt in a lanthanum perovskite Effects of strontium substitution. J. Solid State Chem. 2010, 183, 27–32.

    Article  CAS  Google Scholar 

  46. Tokura, Y.; Tomioka, Y.; Kuwahara, H.; Asamitsu, A.; Moritomo, Y.; Kasai, M. Origins of colossal magnetoresistance in perovskite-type manganese oxides (invited). J. Appl. Phys. 1996, 79, 5288.

    Article  CAS  Google Scholar 

  47. Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

    Article  CAS  Google Scholar 

  48. Gu, W. H.; Cui, X. Q.; Zheng, J.; Yu, J. W.; Zhao, Y.; Ji, G. B. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 2021, 67, 265–272.

    Article  CAS  Google Scholar 

  49. Raddaoui, Z.; El Kossi, S.; Al-Shahrani, T.; Bourguiba, M.; Dhahri, J.; Chafra, M.; Belmabrouk, H. Study of structural, conduction mechanism and dielectric behavior of La0.7Sr0.3Mn0.8Fe0.2O3 manganite. J. Mater. Sci. Mater. Electron. 2020, 31, 21732–21746.

    Article  CAS  Google Scholar 

  50. Kumar, N.; Kishan, H.; Rao, A.; Awana, V. P. S. Fe ion doping effect on electrical and magnetic properties of La0.7Ca0.3Mn1−xFexO3 (0 ≤ x ≤ 1). J. Alloys Compd. 2010, 502, 283–288.

    Article  CAS  Google Scholar 

  51. Kallias, G.; Pissas, M.; Devlin, E.; Simopoulos, A. Mössbauer study of 57Fe-doped La1−xCaxMnO3 (x = 0. 5, 0. 6). Phys. Rev. B 2002, 65, 144426.

    Article  Google Scholar 

  52. Tkachuk, A.; Rogacki, K.; Brown, D. E.; Dabrowski, B.; Fedro, A. J.; Kimball, C. W.; Pyles, B.; Xiong, X.; Rosenmann, D.; Dunlap, B. D. Dynamics of phase stability and magnetic order in magnetoresistive La0.83Sr0.17Mn0.9857Fe0.02O3. Phys. Rev. B 1998, 57, 8509.

    Article  CAS  Google Scholar 

  53. Baazaoui, M.; Zemni, S.; Boudard, M.; Rahmouni, H.; Gasmi, A.; Selmi, A.; Oumezzine, M. Magnetic and electrical behaviour of La0.67Ba0.33Mn1−xFexO3 perovskites. Mater. Lett. 2009, 63, 2167–2170.

    Article  CAS  Google Scholar 

  54. Astik, N.; Jha, P. K.; Pratap, A. Structural, morphological, differential scanning calorimetric and thermogravimetric studies of ball milled Fe doped nanoscale La0.67Sr0.33MnO3 manganite. J. Electron. Mater. 2018, 47, 1937–1943.

    Article  CAS  Google Scholar 

  55. Astik, N.; Jha, P. K.; Sathe, V. Temperature dependent Raman spectroscopic study of the Fe doped La0.67Sr0.33MnO3 prepared using ball milling method. Phys. Solid State 2019, 61, 618–626.

    Article  CAS  Google Scholar 

  56. Baazaoui, M.; Zemni, S.; Boudard, M.; Rahmouni, H.; Oumezzine, M.; Selmi, A. Conduction mechanism in La0.67Ba0.33Mn1−xFexO3 (x = 0–0.2) perovskites. Phys. B Condensed Matt. 2010, 405, 1470–1474.

    Article  CAS  Google Scholar 

  57. Sharif, S.; Murtaza, G.; Meydan, T.; Williams, P. I.; Cuenca, J.; Hashimdeen, S. H.; Shaheen, F.; Ahmad, R. Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3 thin films prepared by pulsed laser deposition. Thin Solid Films 2018, 662, 83–89.

    Article  CAS  Google Scholar 

  58. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  CAS  Google Scholar 

  59. Huang, L. X.; Duan, Y. P.; Dai, X. H.; Zeng, Y. S.; Ma, G. J.; Liu, Y.; Gao, S. H.; Zhang, W. P. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 2019, 15, 1902730.

    Article  Google Scholar 

  60. Zhao, S. X.; Ma, H.; Shao, T. Q.; Wang, J.; Yang, Z. N.; Meng, Y. Y.; Feng, M. D.; Yan, M. B.; Wang, J. F.; Qu, S. B. High temperature metamaterial enhanced electromagnetic absorbing coating prepared with alumina ceramic. J. Alloys Compd. 2021, 874, 159822.

    Article  CAS  Google Scholar 

  61. Wan, F.; Yan, J. H.; Xu, H. M. Improved mechanical and high-temperature electromagnetic wave absorption properties of SiCf/BN/AlPO4 composites with absorber multiwalled carbon nanotubes. Compos. Interfaces 2020, 28, 809–826.

    Article  Google Scholar 

  62. Liu, X. Z.; Luo, H.; Yang, J. J.; Wang, X.; Qu, Z. W.; Luo, H.; Gong, R. Z. Enhancement on high-temperature microwave absorption properties of TiB2−MgO composites with multi-interfacial effects. Ceram. Int. 2021, 47, 4475–4485.

    Article  CAS  Google Scholar 

  63. Shao, T. Q.; Ma, H.; Wang, J.; Yan, M. B.; Feng, M. D.; Yang, Z. N.; Zhou, Q.; Wang, J. F.; Meng, Y. Y.; Zhao, S. X. et al. Ultra-thin and high temperature nicraly alloy metamaterial enhanced radar absorbing coating. J. Alloys Compd. 2020, 832, 154945.

    Article  CAS  Google Scholar 

  64. Shao, T. Q.; Ma, H.; Wang, J.; Feng, M. D.; Yan, M. B.; Wang, J. F.; Yang, Z. N.; Zhou, Q.; Luo, H.; Qu, S. B. High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material. J. Eur. Ceram. Soc. 2020, 40, 2013–2019.

    Article  CAS  Google Scholar 

  65. Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4−rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for financial support from the National Nature Science Foundation of China (Nos. 51971111 and 61901430) and the Foundation of National Key Laboratory (No. 6142908KQ111501114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoke Wei or Guangbin Ji.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Z., Wei, G., Zhang, H. et al. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 15, 7731–7741 (2022). https://doi.org/10.1007/s12274-022-4500-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4500-6

Keywords

Navigation