Skip to main content
Log in

Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The separator is of great significance to alleviate the shuttle effect and dendrite growth of lithium-sulfur batteries. However, most of the current commercial separators cannot meet these requirements well. In this work, a dense metal-organic-framework (MOF) modification layer is in-situ prepared by the assistant of polydopamine on the polypropylene separators. Due to the unique structure and synergistic effect of polydopamine (PDA) and zeolitic imidazolate framework-8 (ZIF-8), the functional separator can not only trap the polysulfides effectively but also promote the transport of lithium ions. As a result, the battery assembled with the functional separator exhibits excellent cycle stability. The capacity remains 711 mAh·g−1 after 500 cycles at 2 C, and the capacity decay rate is as low as 0.013% per cycle. The symmetrical battery is cycled for 1,000 h at 2 mA·cm2 (2 mAh·cm−2) with the plating/stripping overpotential of 20 mV. At the same time, the modification separator shows a higher lithium ion transference number (0.88), better thermal stability and electrolyte wettability than the unmodified separator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  2. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    Article  CAS  Google Scholar 

  3. Zhao, M.; Peng, Y. Q.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries. J. Energy Chem. 2021, 56, 203–208.

    Article  CAS  Google Scholar 

  4. Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

    Article  CAS  Google Scholar 

  5. Zhao, M.; Li, X. Y.; Chen, X.; Li, B. Q.; Kaskel, S.; Zhang, Q.; Huang, J. Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries. eSience 2021, 1, 44–52.

    Google Scholar 

  6. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

    Article  Google Scholar 

  7. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    Article  CAS  Google Scholar 

  8. Tao, T.; Lu, S. G.; Fan, Y.; Lei, W. W.; Huang, S. M.; Chen, Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700542.

    Article  Google Scholar 

  9. Huang, J. Q.; Zhang, Q.; Peng, H. J.; Liu, X. Y.; Qian, W. Z.; Wei, F. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ. Sci. 2014, 7, 347–353.

    Article  CAS  Google Scholar 

  10. Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 2011, 23, 3066–3070.

    Article  CAS  Google Scholar 

  11. Ryou, M. H.; Lee, D. J.; Lee, J. N.; Lee, Y. M.; Park, J. K.; Choi, J. W. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2012, 2, 645–650.

    Article  CAS  Google Scholar 

  12. Kim, J. H.; Lee, D.; Lee, Y. H.; Chen, W. S.; Lee, S. Y. Nanocellulose for energy storage systems: Beyond the limits of synthetic materials. Adv. Mater. 2019, 31, 1804826.

    Article  Google Scholar 

  13. Yu, X. W.; Wu, H.; Koo, J. H.; Manthiram, A. Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 1902872.

    Article  CAS  Google Scholar 

  14. Wang, X. F.; Wang, Z. X.; Chen, L. Q. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery. J. Power Sources 2013, 242, 65–69.

    Article  CAS  Google Scholar 

  15. Pang, Y.; Wei, J. S.; Wang, Y. G.; Xia, Y. Y. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702288.

    Article  Google Scholar 

  16. Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

    Article  CAS  Google Scholar 

  17. Tan, S. S.; Dai, Y. H.; Jiang, Y. L.; Wei, Q. L.; Zhang, G. B.; Xiong, F. Y.; Zhu, X. Q.; Hu, Z. Y.; Zhou, L.; Jin, Y. C. et al. Revealing the origin of highly efficient polysulfide anchoring and transformation on anion-substituted vanadium nitride host. Adv. Funct. Mater. 2021, 31, 2008034.

    Article  CAS  Google Scholar 

  18. He, J. R.; Chen, Y. F.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy Environ. Sci. 2018, 11, 2560–2568.

    Article  CAS  Google Scholar 

  19. Xu, J.; An, S. H.; Song, X. Y.; Cao, Y. J.; Wang, N.; Qiu, X.; Zhang, Y.; Chen, J. W.; Duan, X. L.; Huang, J. H. et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 2021, 33, 2105178.

    Article  CAS  Google Scholar 

  20. Meng, J. S.; Liu, X.; Niu, C. J.; Pang, Q.; Li, J. T.; Liu, F.; Liu, Z. A.; Mai, L. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186.

    Article  CAS  Google Scholar 

  21. Zhou, C.; Li, Z. H.; Xu, X.; Mai, L. Q. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021, 8, nwab055.

    Article  CAS  Google Scholar 

  22. Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.

    Article  Google Scholar 

  23. Lin, C.; Qu, L. B.; Li, J. T.; Cai, Z. Y.; Liu, H. Y.; He, P.; Xu, X.; Mai, L. Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res. 2019, 12, 205–210.

    Article  CAS  Google Scholar 

  24. Mathew, D. E.; Gopi, S.; Kathiresan, M.; Rani, G. J.; Thomas, S.; Stephan, A. M. A porous organic polymer-coated permselective separator mitigating self-discharge of lithium-sulfur batteries. Mater. Adv. 2020, 1, 648–657.

    Article  CAS  Google Scholar 

  25. He, M. L.; Wang, L.; Lv, Y. T.; Wang, X. D.; Zhu, J. N.; Zhang, Y.; Liu, T. T. Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal. Chem. Eng. J. 2020, 389, 124452.

    Article  CAS  Google Scholar 

  26. Ma, C. C.; Li, Y. J.; Nian, P.; Liu, H. Q.; Qiu, J. S.; Zhang, X. F. Fabrication of oriented metal-organic framework nanosheet membrane coated stainless steel meshes for highly efficient oil/water separation. Sep. Purif. Technol. 2019, 229, 115835.

    Article  CAS  Google Scholar 

  27. Zhao, Y. H.; Dong, H. X.; He, X. Y.; Yu, J.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Zhang, H. S.; Li, R. M.; Wang, J. Design of 2D mesoporous Zn/Co-based metal-organic frameworks as a flexible electrode for energy storage and conversion. J. Power Sources 2019, 438, 227057.

    Article  CAS  Google Scholar 

  28. Pan, T. Y.; Li, Z. H.; He, Q.; Xu, X.; He, L.; Meng, J. S.; Zhou, C.; Zhao, Y.; Mai, L. Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping. Energy Storage Mater. 2019, 23, 55–61.

    Article  Google Scholar 

  29. Xia, Y. Y.; Xu, N.; Du, L. L.; Cheng, Y.; Lei, S. L.; Li, S. J.; Liao, X. B.; Shi, W. C.; Xu, L.; Mai, L. Rational design of ion transport paths at the interface of metal-organic framework modified solid electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 22930–22938.

    Article  CAS  Google Scholar 

  30. Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small 2016, 12, 381–389.

    Article  CAS  Google Scholar 

  31. Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641–647.

    Article  CAS  Google Scholar 

  32. Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 94, 16094.

    Article  Google Scholar 

  33. Wang, J.; Wang, K.; Yang, Z.; Li, X. D.; Gao, J.; He, J. J.; Wang, N.; Wang, H. L.; Zhang, Y. L.; Huang, C. S. Effective stabilization of long-cycle lithium-sulfur batteries utilizing in situ prepared graphdiyne-modulated separators. ACS Sustainable Chem. Eng. 2020, 8, 1741–1750.

    Article  CAS  Google Scholar 

  34. Li, W. B.; Su, P. C.; Li, Z. J.; Xu, Z. H.; Wang, F.; Ou, H. S.; Zhang, J. H.; Zhang, G. L.; Zeng, E. Ultrathin metal-organic framework membrane production by gel-vapour deposition. Nat. Commun. 2017, 8, 406.

    Article  Google Scholar 

  35. Zhou, C.; He, Q.; Li, Z. H.; Meng, J. S.; Hong, X. F.; Li, Y.; Zhao, Y.; Xu, X.; Mai, L. Q. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 2020, 395, 124979.

    Article  CAS  Google Scholar 

  36. Delparastan, P.; Malollari, K. G.; Lee, H.; Messersmith, P. B. Direct evidence for the polymeric nature of polydopamine. Angew. Chem., Int Ed. 2019, 58, 1077–1082.

    Article  CAS  Google Scholar 

  37. Lee, H. A.; Park, E.; Lee, H. Polydopamine and its derivative surface chemistry in material science: A focused review for studies at KAIST. Adv. Mater. 2020, 32, 1907505.

    Article  CAS  Google Scholar 

  38. D’Ischia, M.; Napolitano, A.; Ball, V.; Chen, C. T.; Buehler, M. J. Polydopamine and eumelanin: From structure-property relationships to a unified tailoring strategy. Acc. Chem. Res. 2014, 47, 3541–3550.

    Article  Google Scholar 

  39. Li, Y.; Li, Z. H.; Zhou, C.; Liao, X. B.; Liu, X. W.; Hong, X. F.; Xu, X.; Zhao, Y.; Mai, L. Gradient sulfur fixing separator with catalytic ability for stable lithium sulfur battery. Chem. Eng. J. 2021, 422, 130107.

    Article  CAS  Google Scholar 

  40. Liu, T. Y.; Kim, K. C.; Lee, B.; Chen, Z. M.; Noda, S.; Jang, S. S.; Lee, S. W. Self-polymerized dopamine as an organic cathode for Li-and Na-ion batteries. Energy Environ. Sci. 2017, 10, 205–215.

    Article  CAS  Google Scholar 

  41. Wu, H. Q.; Ang, J. M.; Kong, J. H.; Zhao, C. Y.; Du, Y. H.; Lu, X. H. One-pot synthesis of polydopamine-Zn complex antifouling coatings on membranes for ultrafiltration under harsh conditions. RSC Adv. 2016, 6, 103390.

    Article  CAS  Google Scholar 

  42. Wang, X. P.; Hou, J. W.; Chen, F. S.; Meng, X. M. In-situ growth of metal-organic framework film on a polydopamine-modified flexible substrate for antibacterial and forward osmosis membranes. Sep. Purif. Technol. 2020, 236, 116239.

    Article  CAS  Google Scholar 

  43. Sun, T.; Li, Z. J.; Wang, H. G.; Bao, D.; Meng, F. L.; Zhang, X. B. A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 10662–10666.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by China-Japanese Research Cooperative Program founded by the Ministry of Science and Technology of the People’s Republic of China (No. 2017YFE0127600), the National Natural Science Foundation of China (No. 51702247), the Fundamental Research Funds for the Central Universities (No. WUT: 2020III023, 2020III050, 2021IVA123, 2021III009), Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City (No. 520LH056), Sanya Science and Education Innovation Park of Wuhan University of Technology (No. 2020KF0021), and the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (WUT: 2021-ZD-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinyou An or Xu Xu.

Electronic Supplementary Material

12274_2022_4423_MOESM1_ESM.pdf

Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhou, C., Dong, C. et al. Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery. Nano Res. 15, 8048–8055 (2022). https://doi.org/10.1007/s12274-022-4423-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4423-2

Keywords

Navigation