Skip to main content
Log in

Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid-state batteries (SSBs) will potentially offer increased energy density and, more importantly, improved safety for next generation lithium-ion (Li-ion) batteries. One enabling technology is solid-state composite cathodes with high operating voltage and area capacity. Current composite cathode manufacturing technologies, however, suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives. Here, we report a liquid-phase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design, which eventually contribute to high area capacity. A small amount (∼ 4 wt.%) of lithium hydroxide (LiOH) and boric acid (H3BO3) with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi0.8Mn0.1Co0.1 (NMC811) particles at a moderately elevated temperature (∼ 350 °C) in a liquid state, which not only enable intimate physical contact but also promote the densification process. In addition, the liquid-phase additives react and transform to ionic-conductive lithium boron oxide, together with the indium tin oxide (ITO) nanoparticle coating, mixed ionic-electronic interphases of composite cathode are successfully fabricated. Furthermore, the liquid-phase sintering performed at high-temperature (∼ 800 °C) also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture. The promising performance characteristics of such composite cathodes, for example, delivering an area capacity above 8 mAh·cm−2 within a wide voltage window up to 4.4 V, open new opportunities for SSBs with a high energy density of 500 Wh·kg−1 for safer portable electronic and electrical transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, L. Z.; He, H. C.; Nan, C. W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019.

    CAS  Google Scholar 

  2. Tan, D. H. S.; Banerjee, A.; Chen, Z.; Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 2020, 15, 170–180.

    CAS  Google Scholar 

  3. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030.

    CAS  Google Scholar 

  4. Zhang, Q. B.; Gong, Z. L.; Yang, Y. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Phys. Sin. 2020, 69, 228803.

    Google Scholar 

  5. Huang, Q.; Turcheniuk, K.; Ren, X. L.; Magasinski, A.; Song, A. Y.; Xiao, Y. R.; Kim, D.; Yushin, G. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 2019, 18, 1343–1349.

    CAS  Google Scholar 

  6. Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

    CAS  Google Scholar 

  7. Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

    CAS  Google Scholar 

  8. Wan, H. L.; Liu, S. F.; Deng, T.; Xu, J. J.; Zhang, J. X.; He, X. Z.; Ji, X.; Yao, X. Y.; Wang, C. S. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett. 2021, 6, 862–868.

    CAS  Google Scholar 

  9. Feng, X. Y.; Wu, H. H.; Gao, B.; Świętoslawski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

    CAS  Google Scholar 

  10. Wu, K.; Li, Q.; Dang, R. B.; Deng, X.; Chen, M. M.; Lee, Y. L.; Xiao, X. L.; Hu, Z. B. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shell structuring. Nano Res. 2019, 12, 2460–2467.

    CAS  Google Scholar 

  11. Shao, Y. J.; Wang, H. C.; Gong, Z. L.; Wang, D. W.; Zheng, B. Z.; Zhu, J. P.; Lu, Y. X.; Hu, Y. S.; Guo, X. X.; Li, H. et al. Drawing a soft interface: An effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 2018, 3, 1212–1218.

    CAS  Google Scholar 

  12. Balaish, M.; Gonzalez-Rosillo, J. C.; Kim, K. J.; Zhu, Y. T.; Hood, Z. D.; Rupp, J. L. M. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 2021, 6, 227–239.

    CAS  Google Scholar 

  13. He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.

    CAS  Google Scholar 

  14. Kim, J. M.; Zhang, X. H.; Zhang, J. G.; Manthiram, A.; Meng, Y. S.; Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 2021, 46, 155–182.

    CAS  Google Scholar 

  15. Kim, U. H.; Park, G. T.; Son, B. K.; Nam, G. W.; Liu, J.; Kuo, L. Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat. Energy 2020, 5, 860–869.

    CAS  Google Scholar 

  16. Zhang, F.; Lou, S. F.; Li, S.; Yu, Z. J.; Liu, Q. S.; Dai, A.; Cao, C. T.; Toney, M. F.; Ge, M. Y.; Xiao, X. H. et al. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat. Commun. 2020, 11, 3050.

    CAS  Google Scholar 

  17. Guo, F. Y.; Xie, Y. F.; Zhang, Y. X. Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries. Nano Res. 2020, 15, 2052–2059.

    Google Scholar 

  18. Bi, Y. J.; Tao, J. H.; Wu, Y. Q.; Li, L. Z.; Xu, Y. B.; Hu, E. Y.; Wu, B. B.; Hu, J. T.; Wang, C. M.; Zhang, J. G. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 2020, 370, 1313–1317.

    CAS  Google Scholar 

  19. Tan, D. H. S.; Chen, Y. T.; Yang, H. D.; Bao, W.; Sreenarayanan, B.; Doux, J. M.; Li, W. K.; Lu, B. Y.; Ham, S. Y.; Sayahpour, B. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373, 1494–1499.

    CAS  Google Scholar 

  20. Yi, M. Y.; Li, J.; Fan, X. M.; Bai, M. H.; Zhang, Z.; Hong, B.; Zhang, Z. A.; Hu, G. R.; Jiang, H.; Lai, Y. Q. Single crystal Ni-rich layered cathodes enabling superior performance in all-solid-state batteries with PEO-based solid electrolytes. J. Mater. Chem. A 2021, 9, 16787–16797.

    CAS  Google Scholar 

  21. Sun, H.; Xie, X. X.; Huang, Q.; Wang, Z. X.; Chen, K. J.; Li, X. L.; Gao, J.; Li, Y. T.; Li, H.; Qiu, J. S. et al. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew. Chem., Int. Edit. 2021, 60, 18335–18343.

    CAS  Google Scholar 

  22. Liu, X. S.; Zheng, B. Z.; Zhao, J.; Zhao, W. M.; Liang, Z. T.; Su, Y.; Xie, C. P.; Zhou, K.; Xiang, Y. X.; Zhu, J. P. et al. Electrochemomechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv. Energy Mater. 2021, 11, 2003583.

    CAS  Google Scholar 

  23. Randau, S.; Weber, D. A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W. G. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 2020, 5, 259–270.

    CAS  Google Scholar 

  24. Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579.

    CAS  Google Scholar 

  25. Li, Y. T.; Chen, X.; Dolocan, A.; Cui, Z. M.; Xin, S.; Xue, L. G.; Xu, H. H.; Park, K.; Goodenough, J. B. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 2018, 140, 6448–6455.

    CAS  Google Scholar 

  26. Pan, K. C.; Zhang, L.; Qian, W. W.; Wu, X. K.; Dong, K.; Zhang, H. T.; Zhang, S. J. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 2020, 32, 2000399.

    CAS  Google Scholar 

  27. Hu, C. J.; Shen, Y. B.; Shen, M.; Liu, X.; Chen, H. W.; Liu, C. H.; Kang, T.; Jin, F.; Li, L.; Li, J. et al. Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 2020, 142, 18035–18041.

    CAS  Google Scholar 

  28. Liu, G. Z.; Shi, J. M.; Zhu, M. T.; Weng, W.; Shen, L.; Yang, J.; Yao, X. Y. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater. 2021, 38, 249–254.

    Google Scholar 

  29. Wan, H. L.; Cai, L. T.; Han, F. D.; Mwizerwa, J. P.; Wang, C. S.; Yao, X. Y. Construction of 3D electronic/ionic conduction networks for all-solid-state lithium batteries. Small 2019, 15, 1905849.

    CAS  Google Scholar 

  30. Zhang, C. Y.; Liu, S.; Li, G. J.; Zhang, C. J.; Liu, X. J.; Luo, J. Y. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv. Mater. 2018, 30, 1801328.

    Google Scholar 

  31. Yan, Y. Y.; Ju, J. W.; Dong, S. M.; Wang, Y. T.; Huang, L.; Cui, L. F.; Jiang, F.; Wang, Q. L.; Zhang, Y. F.; Cui, G. L. In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 2021, 8, 2003887.

    CAS  Google Scholar 

  32. Han, X.; Wang, S. Y.; Xu, Y. B.; Zhong, G. M.; Zhou, Y.; Liu, B.; Jiang, X. Y.; Wang, X.; Li, Y.; Zhang, Z. Q. et al. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy Environ. Sci. 2021, 14, 5044–5056.

    CAS  Google Scholar 

  33. Liu, T.; Zhang, Y. B.; Zhang, X.; Wang, L.; Zhao, S. X.; Lin, Y. H.; Shen, Y.; Luo, J.; Li, L. L.; Nan, C. W. Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. J. Mater. Chem. A 2018, 6, 4649–4657.

    CAS  Google Scholar 

  34. Han, F. D.; Yue, J.; Chen, C.; Zhao, N.; Fan, X. L.; Ma, Z. H.; Gao, T.; Wang, F.; Guo, X. X.; Wang, C. S. Interphase engineering enabled all-ceramic lithium battery. Joule 2018, 3, 497–508.

    Google Scholar 

  35. Zhang, Q.; Cao, D. X.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. L. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 2019, 31, 1901131.

    CAS  Google Scholar 

  36. Gellert, M.; Dashjav, E.; Grüner, D.; Ma, Q. L.; Tietz, F. Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate. Ionics 2018, 24, 1001–1006.

    CAS  Google Scholar 

  37. Feng, W. L.; Lai, Z. Z.; Dong, X. L.; Li, P. L.; Wang, Y. G.; Xia, Y. Y. Garnet-based all-ceramic lithium battery enabled by Li2.985B0.005OCl solder. iScience 2020, 33, 101071.

    Google Scholar 

  38. Xiao, Y. R.; Turcheniuk, K.; Narla, A.; Song, A. Y.; Ren, X. L.; Magasinski, A.; Jain, A.; Huang, S.; Lee, H.; Yushin, G. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solidstate lithium-ion batteries. Nat. Mater. 2021, 30, 984–990.

    Google Scholar 

  39. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  40. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  41. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  42. Liu, B.; Xu, B.; Wu, M.; Ouyang, C. Y. First-principles GGA+U study on structural and electronic properties in LiMn0.5Ni0.5O2, LiMn0.5Co0.5O2 and LiCo0.5Ni0.5O2. Int. J. Elecfrochem. Sci. 2016, 11, 432–445.

    CAS  Google Scholar 

  43. Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem 2004, 25, 1463–1473.

    CAS  Google Scholar 

  44. Shi, S. Q.; Gao, J.; Liu, Y.; Zhao, Y.; Wu, Q.; Ju, W. W.; Ouyang, C. Y.; Xiao, R. J. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin. Phys. B 2015, 25, 018212.

    Google Scholar 

  45. He, B.; Chi, S. T.; Ye, A. J.; Mi, P. H.; Zhang, L. W.; Pu, B. W.; Zou, Z. Y.; Ran, Y. B.; Zhao, Q.; Wang, D. et al. High-throughput screening platform for solid electrolytes combining hierarchical iontransport prediction algorithms. Sci. Data 2020, 7, 151.

    Google Scholar 

  46. Elalaoui, A. E.; Maillard, A.; Fontana, M. D. Raman scattering and non-linear optical properties in Li2B4O7. J. Phys.: Condens. Matter 2015, 17, 7441.

    Google Scholar 

  47. Osipov, A. A.; Osipova, L. M. Structure of lithium borate glasses and melts: Investigation by high temperature Raman spectroscopy. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 2009, 50, 343–354.

    CAS  Google Scholar 

  48. Tatsumisago, M.; Takahashi, M.; Minami, T.; Tanaka, M.; Umesaki, N.; Iamoto, N. Structural investigation of rapidly quenched Li2O-B2O3 glasses by Raman spectroscopy. Yogyo Kyokaishi 1986, 94, 464–469.

    CAS  Google Scholar 

  49. Rahaman, M. N. Ceramic Processing, 2nd ed.; CRC Press: Boca Raton, 2017.

    Google Scholar 

  50. Park, M.; Zhang, X. C.; Chung, M.; Less, G. B.; Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929.

    CAS  Google Scholar 

  51. Marzec, J.; Świerczek, K.; Przewoźnik, J.; Molenda, J.; Simon, D.; Kelder, E.; Schoonman, J. Conduction mechanism in operating a LiMn2O4 cathode. Solid State Ionics 2002, 146, 225–237.

    CAS  Google Scholar 

  52. Wang, S. L.; Lin, C. H.; Yan, Y. Y.; Wang, M. K. Synthesis of Li/Al LDH using aluminum and LiOH. Appl. Clay Sci. 2013, 72, 191–195.

    CAS  Google Scholar 

  53. Qu, J.; He, X. M.; Wang, B. T.; Zhong, L. H.; Wan, L.; Li, X. W.; Song, S. X.; Zhang, Q. W. Synthesis of Li-Al layered double hydroxides via a mechanochemical route. Appl. Clay Sci. 2016, 120, 24–27.

    CAS  Google Scholar 

  54. Zhang, Y. B.; Sun, X.; Cao, D. X.; Gao, G. H.; Yang, Z. Z.; Zhu, H. L.; Wang, Y. Self-stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH. Energy Storage Mater. 2021, 41, 505–514.

    Google Scholar 

  55. Pei, B.; Zhou, H.; Goel, A.; Zuba, M.; Liu, H.; Xin, F. X.; Whittingham, M. S. Al substitution for Mn during Co-precipitation boosts the electrochemical performance of LiNi0.8Mn0.1Co0.1O2. J. Electrochem. Soc. 2021, 168, 050532.

    CAS  Google Scholar 

  56. Deng, S. X.; Li, X.; Ren, Z. H.; Li, W. H.; Luo, J.; Liang, J. W.; Liang, J. N.; Banis, M. N.; Li, M. S.; Zhao, Y. et al. Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Mater. 2020, 27, 117–123.

    Google Scholar 

  57. Niu, C. Q.; Luo, W. J.; Dai, C. M.; Yu, C. B.; Xu, Y. X. High-voltage — tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem., Int. Edit. 2021, 60, 24915–24923.

    CAS  Google Scholar 

  58. Shrestha, S.; Kim, J.; Jeong, J.; Lee, H.; Kim, S. C.; Hah, H. J.; Oh, K.; Lee, S. Effect of amorphous LiPON coating on electrochemical performance of LiNi0.8Mn0.1Co0.1O2 (NMC811) in all solid-state batteries. J. Electrochem. Soc. 2021, 168, 060537.

    CAS  Google Scholar 

  59. Ye, L. H.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593, 218–222.

    CAS  Google Scholar 

  60. Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403.

    CAS  Google Scholar 

  61. Yoon, M.; Dong, Y. H.; Hwang, J.; Sung, J.; Cha, H.; Ahn, K.; Huang, Y. M.; Kang, S. J.; Li, J.; Cho, J. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 2021, 6, 362–371.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Science Foundation of Jiangsu Province (No. BK20200800), the National Natural Science Foundation of China (Nos. 51902165, 12004145, 52072323, and 52122211), Natural Science Foundation of Jiangxi Province (Nos. 20192ACBL2004 and 20212BAB214032), and Nanjing Science & Technology Innovation Project for Personnel Studying Abroad. Part of the calculations were supported by the Center for Computational Science and Engineering at Southern University of Science and Technology, and high-performance computing platform of Jinggangshan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jizhang Chen, Bo Liu or Songyan Chen.

Electronic Supplementary Material

12274_2022_4242_MOESM1_ESM.pdf

Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Zhou, W., Chen, M. et al. Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery. Nano Res. 15, 6156–6167 (2022). https://doi.org/10.1007/s12274-022-4242-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4242-5

Keywords

Navigation