Skip to main content
Log in

Ultra-broadband, fast, and polarization-sensitive photoresponse of low-symmetry 2D NdSb2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Broadband photodetectors with polarization-sensitive ability have received extraordinary attention for modern optoelectronic devices. Ideal photodetectors should possess high responsivity, fast response, and good stability, which are rare to meet at the same time in one low-symmetric two-dimentional (2D) material. In this work, neodymium diantimonides (NdSb2), a member of light rare-earth diantimonides RSb2 (R = La−Nd, Sm) with low-symmetry structure, is introduced as a fascinating highly anisotropic 2D material for broadband detection (532 nm to 4 µm). The photodetector exhibits a responsivity of 0.49 mA·W−1 with 15 µs response time at 532 nm and highly stable performance under ambient conditions over 8 months. Furthermore, we identify the polarization-sensitive photoresponse of the detector and demonstrate a high anisotropic factor ∼ 1.6. In addition, strong in-plane anisotropy is revealed by anisotropic phonon response and the photodetection mechanism is investigated by scanning photocurrent microscopy measurements. This pioneer work on NdSb2 paves the way for further exploration of 2D RSb2 for high performance polarized photodetectors with fast photothermoelectric response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sunku, S. S.; Halbertal, D.; Stauber, T.; Chen, S.; McLeod, A. S.; Rikhter, A.; Berkowitz, M. E.; Lo, C. F. B.; Gonzalez-Acevedo, D. E.; Hone, J. C. et al. Hyperbolic enhancement of photocurrent patterns in minimally twisted bilayer graphene. Nat. Commun. 2021, 12, 1641.

    Article  CAS  Google Scholar 

  2. Ma, J. C.; Gu, Q. Q.; Liu, Y. N.; Lai, J. W.; Yu, P.; Zhuo, X.; Liu, Z.; Chen, J. H.; Feng, J.; Sun, D. Nonlinear photoresponse of type-II weyl semimetals. Nat. Mater. 2019, 18, 476–481.

    Article  CAS  Google Scholar 

  3. Liu, J.; Xia, F. N.; Xiao, D.; García de Abajo, F. J.; Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 2020, 19, 830–837.

    Article  CAS  Google Scholar 

  4. Rogalski, A. HgCdte infrared detector material: History, status and outlook. Rep. Prog. Phys. 2005, 68, 2267–2336.

    Article  CAS  Google Scholar 

  5. Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

    Article  CAS  Google Scholar 

  6. Chi, S. M.; Li, Z. L.; Xie, Y.; Zhao, Y. G.; Wang, Z. Y.; Li, L.; Yu, H. H.; Wang, G.; Weng, H. M.; Zhang, H. J. et al. A wide-range photosensitive weyl semimetal single crystal—TaAs. Adv. Mater. 2018, 30, 1801372.

    Article  Google Scholar 

  7. Wang, L.; Liu, C. L.; Chen, X. S.; Zhou, J.; Hu, W. D.; Wang, X. F.; Li, J. H.; Tang, W. W.; Yu, A. Q.; Wang, S. W. et al. Toward sensitive room-temperature broadband detection from infrared to terahertz with antenna-integrated black phosphorus photoconductor. Adv. Funct. Mater. 2017, 27, 1604414.

    Article  Google Scholar 

  8. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Article  CAS  Google Scholar 

  9. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

    Article  CAS  Google Scholar 

  10. Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide midwave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

    Article  CAS  Google Scholar 

  11. Lai, J. W.; Liu, X.; Ma, J. C.; Wang, Q. S.; Zhang, K. N.; Ren, X.; Liu, Y. N.; Gu, Q. Q.; Zhuo, X.; Lu, W. et al. Anisotropic broadband photoresponse of layered type-ii weyl semimetal MoTe2. Adv. Mater. 2018, 30, 1707152.

    Article  Google Scholar 

  12. Lai, J. W.; Liu, Y. N.; Ma, J. C.; Zhuo, X.; Peng, Y.; Lu, W.; Liu, Z.; Chen, J. H.; Sun, D. Broadband anisotropic photoresponse of the “hydrogen atom” version type-II weyl semimetal candidate TaIrTe4. ACS Nano 2018, 12, 4055–4061.

    Article  CAS  Google Scholar 

  13. Wang, Q. S.; Yesilyurt, C.; Liu, F. C.; Siu, Z. B.; Cai, K. M.; Kumar, D.; Liu, Z.; Jalil, M. B. A.; Yang, H. Anomalous photothermoelectric transport due to anisotropic energy dispersion in WTe2. Nano Lett. 2019, 19, 2647–2652.

    Article  CAS  Google Scholar 

  14. Pace, S.; Martini, L.; Convertino, D.; Keum, D. H.; Forti, S.; Pezzini, S.; Fabbri, F.; Miseikis, V.; Coletti, C. Synthesis of large-scale monolayer 1T′-MoTe2 and its stabilization via scalable hbn encapsulation. ACS Nano 2021, 15, 4213–4225.

    Article  CAS  Google Scholar 

  15. Ye, F.; Lee, J.; Hu, J.; Mao, Z. Q.; Wei, J.; Feng, P. X. L. Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions. Small 2016, 12, 5802–5808.

    Article  CAS  Google Scholar 

  16. Borsese, A.; Ferro, R.; Capelli, R.; Delfino, S. Heats of formation of neodymium-antimony alloys. J. Less Common Met. 1997, 15, 77–83.

    Google Scholar 

  17. Acatrinei, A. Angle-resolved photoemission study and neutron diffraction measurements on LaSb2. Ph. D. Dissertation, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, 2003.

    Google Scholar 

  18. Bud’ko, S. L.; Canfield, P. C.; Mielke, C. H.; Lacerda, A. H. Anisotropic magnetic properties of light rare-earth diantimonides. Phys. Rev. B 1998, 57, 13624.

    Article  Google Scholar 

  19. Ma, Y. Y.; Tang, B. B.; Lian, W. T.; Wu, C. Y.; Wang, X. M.; Ju, H. X.; Zhu, C. F.; Fan, F. J.; Chen, T. Efficient defect passivation of Sb2Se3 film by tellurium doping for high performance solar cells. J. Mater. Chem. A 2020, 8, 6510–6516.

    Article  CAS  Google Scholar 

  20. Zhang, Y. Y.; Chen, Y.; Kou, Q. W.; Wang, Z.; Han, D. L.; Sun, Y. T.; Yang, J. H.; Liu, Y.; Yang, L. L. Effects of Nd concentration on structural and magnetic properties of ZnFe2O4 nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 3665–3671.

    Article  CAS  Google Scholar 

  21. Abdusalyamova, M. N. Phase diagrams and thermodynamic properties of rare earth-antimony systems. J. Alloys Compd. 1993, 202, L15–L20.

    Article  Google Scholar 

  22. Li, X. B.; Chen, C.; Yang, Y.; Lei, Z. B.; Xu, H. 2D re-based transition metal chalcogenides: Progress, challenges, and opportunities. Adv. Sci. 2020, 7, 2002320.

    Article  CAS  Google Scholar 

  23. Tan, C. Y.; Yin, S. Q.; Chen, J. W.; Lu, Y.; Wei, W. S.; Du, H. F.; Liu, K. L.; Wang, F. K.; Zhai, T. Y.; Li, L. Broken-gap PtS2/WSe2 van der waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano 2021, 15, 8328–8337.

    Article  CAS  Google Scholar 

  24. Yang, Y.; Zhang, K. X.; Zhang, L. B.; Hong, G.; Chen, C.; Jing, H. M.; Lu, J. B.; Wang, P.; Chen, X. S.; Wang, L. et al. Controllable growth of type-II dirac semimetal PtTe2 atomic layer on au substrate for sensitive room temperature terahertz photodetection. InfoMat 2021, 3, 705–715.

    Article  CAS  Google Scholar 

  25. Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10. 6 µm. Adv. Mater. 2020, 32, 2004412.

    Article  Google Scholar 

  26. Peng, L. C.; Ye, S.; Song, J.; Qu, J. L. Solution-phase synthesis of few-layer hexagonal antimonene nanosheets via anisotropic growth. Angew. Chem., Int. Ed. 2019, 58, 9891–9896.

    Article  CAS  Google Scholar 

  27. Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. et al. Two-dimensional antimonene single crystals grown by van der waals epitaxy. Nat. Commun. 2016, 7, 13352.

    Article  CAS  Google Scholar 

  28. Nguyen, G. D.; Oyedele, A. D.; Haglund, A.; Ko, W.; Liang, L. B.; Puretzky, A. A.; Mandrus, D.; Xiao, K.; Li, A. P. Atomically precise PdSe2 pentagonal nanoribbons. ACS Nano 2020, 14, 1951–1957.

    Article  CAS  Google Scholar 

  29. Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

    Article  CAS  Google Scholar 

  30. Chen, S. Y.; Goldstein, T.; Venkataraman, D.; Ramasubramaniam, A.; Yan, J. Activation of new Raman modes by inversion symmetry breaking in type ii weyl semimetal candidate T′-MoTe2. Nano Lett. 2016, 16, 5852–5860.

    Article  CAS  Google Scholar 

  31. Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

    Article  CAS  Google Scholar 

  32. Zhou, X.; Hu, X. Z.; Jin, B.; Yu, J.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv. Sci. 2018, 5, 1800478.

    Article  Google Scholar 

  33. Luo, S. W.; Qi, X.; Yao, H.; Ren, X. H.; Chen, Q.; Zhong, J. X. Temperature-dependent Raman responses of the vapor-deposited tin selenide ultrathin flakes. J. Phys. Chem. C 2017, 121, 4674–4679.

    Article  CAS  Google Scholar 

  34. Pi, L. J.; Hu, C. G.; Shen, W. F.; Li, L.; Luo, P.; Hu, X. Z.; Chen, P.; Li, D. Y.; Li, Z. X.; Zhou, X. et al. Highly in-plane anisotropic 2D PdSe2 for polarized photodetection with orientation selectivity. Adv. Funct. Mater. 2020, 31, 2006774.

    Article  Google Scholar 

  35. Li, G.; Yin, S. Q.; Tan, C. Y.; Chen, L. J.; Yu, M. X.; Li, L.; Yan, F. Fast photothermoelectric response in CVD-grown PdSe2 photodetectors with in-plane anisotropy. Adv. Funct. Mater. 2021, 31, 2104787.

    Article  CAS  Google Scholar 

  36. Miao, J. S.; Wang, C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res. 2020, 14, 1878–1888.

    Article  Google Scholar 

  37. Zhong, F.; Wang, H.; Wang, Z.; Wang, Y.; He, T.; Wu, P. S.; Peng, M.; Wang, H. L.; Xu, T. F.; Wang, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Res. 2021, 14, 1840–1862.

    Article  CAS  Google Scholar 

  38. Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a high-performance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281–8289.

    Article  CAS  Google Scholar 

  39. Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.

    Article  CAS  Google Scholar 

  40. Wang, R.; Steinfink, H. The crystal chemistry of selected AB2 rare earth compounds with selenium, tellurium, and antimony. Inorg. Chem. 1967, 6, 1685–1692.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51902001), the Recruitment Program for Leading Talent Team of Anhui Province (2019-16), the Natural Science Foundation of Anhui Province (No. 1908085QE17), and the Open Research Fund of Advanced Laser Technology Laboratory of Anhui Province (No. AHL2020KF02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xucai Kan or Liang Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zhang, H., Li, Y. et al. Ultra-broadband, fast, and polarization-sensitive photoresponse of low-symmetry 2D NdSb2. Nano Res. 15, 5469–5475 (2022). https://doi.org/10.1007/s12274-022-4156-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4156-2

Keywords

Navigation