Skip to main content
Log in

Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-voltage high-nickel lithium layered oxide cathodes show great application prospects to meet the ever-increasing demand for further improvement of the energy density of rechargeable lithium-ion batteries (LIBs) mainly due to their high output capacity. However, severe bulk structural degradation and undesired electrode-electrolyte interface reactions seriously endanger the cycle life and safety of the battery. Here, 2 mol% Ti atom is used as modified material doping into LiNi0.6Co0.2Mn0.2O2 (NCM) to reform LiNi0.6Co0.2Mn0.18Ti0.02O2 (NCM-Ti) and address the long-standing inherent problem. At a high cut-off voltage of 4.5 V, NCM-Ti delivers a higher capacity retention ratio (91.8% vs. 82.9%) after 150 cycles and a superior rate capacity (118 vs. 105 mAh·g-1) at the high current density of 10 C than the pristine NCM. The designed high-voltage full battery with graphite as anode and NCM-Ti as cathode also exhibits high energy density (240 Wh·kg-1) and excellent electrochemical performance. The superior electrochemical behavior can be attributed to the improved stability of the bulk structure and the electrode-electrolyte interface owing to the strong Ti-O bond and no unpaired electrons. The in-situ X-ray diffraction analysis demonstrates that Ti-doping inhibits the undesired H2-H3 phase transition, minimizing the mechanical degradation. The ex-situ TEM and X-ray photoelectron spectroscopy reveal that Ti-doping suppresses the release of interfacial oxygen, reducing undesired interfacial reactions. This work provides a valuable strategic guideline for the application of high-voltage high-nickel cathodes in LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, L. B., Lv, Y. H., Wu, J. X., Xia, C., Kang, Q., Zhang, Y. Z., Liang, H. F., Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.

    Article  CAS  Google Scholar 

  2. Chen, Y., Kang, Q., Jiang, P. K., Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2021, 14, 2424–2431.

    Article  CAS  Google Scholar 

  3. Zhao, J., Zhang, Y. Z., Chen, J. Y., Zhang, W. L., Yuan, D., Chua, R., Alshareef, H. N., Ma, Y. W. Co-doped holey graphene aerogel by selective etching for high-performance sodium-ion storage. Adv. Energy Mater. 2020, 10, 2000099.

    Article  CAS  Google Scholar 

  4. Liang, J., Zhu, G. Y.; Zhang, Y. Z.; Liang, H. F.; Huang, W. Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res., in press, https://doi.org/10.1007/s12274-021-3738-8.

  5. Dunn, B., Kamath, H., Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  6. Armand, M., Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  7. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.

    Article  CAS  Google Scholar 

  8. Jiang, K. Z., Guo, S. H., Pang, W. K., Zhang, X. P., Fang, T. C., Wang, S. F., Wang, F. W., Zhang, X. Y., He. P., Zhou, H. S. Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries. Nano Res. 2021, 14, 4100–4106.

    Article  CAS  Google Scholar 

  9. Wu, K., Li, Q., Dang, R. B., Deng, X., Chen, M. M., Lee, Y. L., Xiao, X. L., Hu, Z. B. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through coreshell structuring. Nano Res. 2019, 12, 2460–2467.

    Article  CAS  Google Scholar 

  10. Lai, Y. J., Li, Z. J., Zhao, W. X., Cheng, X. N., Xu, S., Yu, X., Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.

    Article  CAS  Google Scholar 

  11. Li, W. D., Erickson, E. M., Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26–34.

    Article  CAS  Google Scholar 

  12. Xu, G. L., Liu, X., Daali, A., Amine, R., Chen, Z. H., Amine, K. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. Adv. Funct. Mater. 2020, 30, 2004748.

    Article  CAS  Google Scholar 

  13. Li, W. D., Song, B. H., Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

    Article  CAS  Google Scholar 

  14. Zhang, S., Ma, J., Hu, Z. L., Cui, G. L., Chen, L. Q. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials. Chem. Mater. 2019, 31, 6033–6065.

    Article  CAS  Google Scholar 

  15. Yang, L. Y., Yang, K., Zheng, J. X., Xu, K., Amine, K., Pan, F. Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 4667–4680.

    Article  CAS  Google Scholar 

  16. Tian, C. X., Lin, F., Doeff, M. M. Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion batteries: Surface, bulk behavior, and thermal properties. Acc. Chem. Res. 2018, 51, 89–96.

    Article  CAS  Google Scholar 

  17. Romano Brandt, L., Marie, J. J., Moxham, T., Förstermann, D. P., Salvati, E., Besnard, C., Papadaki, C., Wang, Z. F., Bruce, P. G., Korsunsky, A. M. Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle. Energy Environ. Sci. 2020, 13, 3556–3566.

    Article  CAS  Google Scholar 

  18. Cheng, X. P., Li, Y. H., Cao, T. C., Wu, R., Wang, M. M., Liu, H., Liu, X. Q., Lu, J. X., Zhang, Y. F. Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy. ACS Energy Lett. 2021, 6, 1703–1710.

    Article  CAS  Google Scholar 

  19. Hwang, S., Chang, W., Kim, S. M., Su, D., Kim, D. H., Lee, J. Y., Chung, K. Y., Stach, E. A. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge. Chem. Mater. 2014, 26, 1084–1092.

    Article  CAS  Google Scholar 

  20. Zheng, J. M., Gu, M., Xiao, J., Zuo, P. J., Wang, C. M., Zhang, J. G. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 2013, 13, 3824–3830.

    Article  CAS  Google Scholar 

  21. Li, Q., Li, G. S., Fu, C. C., Luo, D., Fan, J. M., Li, L. P. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 10330–10341.

    Article  CAS  Google Scholar 

  22. Wang, D. W., Xin, C., Zhang, M. J., Bai, J. M., Zheng, J. X., Kou, R. H., Peter Ko, J. Y., Huq, A., Zhong, G. M., Sun, C. J. et al. Intrinsic role of cationic substitution in tuning Li/Ni mixing in high- Ni layered oxides. Chem. Mater. 2019, 31, 2731–2740.

    Article  CAS  Google Scholar 

  23. Chen, J., Deng, W. T., Gao, X., Yin, S. Y., Yang, L., Liu, H. Q., Zou, G. Q., Hou, H. S., Ji, X. B. Demystifying the lattice oxygen redox in layered oxide cathode materials of lithium-ion batteries. ACS Nano 2021, 15, 6061–6104.

    Article  CAS  Google Scholar 

  24. House, R. A., Marie, J. J., Pérez-Osorio, M. A., Rees, G. J., Boivin, E., Bruce, P. G. The role of O2 in O-redox cathodes for Li-ion batteries. Nat. Energy 2021, 6, 781–789.

    Article  CAS  Google Scholar 

  25. Hou, X. Y., Ohta, K., Kimura, Y., Tamenori, Y., Tsuruta, K., Amezawa, K., Nakamura, T. Lattice oxygen instability in oxidebased intercalation cathodes: A case study of layered LiNi1/3Co1/3Mn1/3O2. Adv. Energy Mater. 2021, 11, 2101005.

    Article  CAS  Google Scholar 

  26. Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254.

    Article  Google Scholar 

  27. Assat, G., Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386.

    Article  CAS  Google Scholar 

  28. Zhuang, Z. C., Li, Y., Li, Y. H., Huang, J. Z., Wei, B., Sun, R., Ren, Y. J., Ding, J., Zhu, J. X., Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  29. Jung, R., Metzger, M., Maglia, F., Stinner, C., Gasteiger, H. A. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J. Phys. Chem. Lett. 2017, 8, 4820–4825.

    Article  CAS  Google Scholar 

  30. Li, W. D.; Dolocan, A., Oh, P., Celio, H., Park, S., Cho, J., Manthiram, A. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nat. Commun. 2017, 8, 14589.

    Article  Google Scholar 

  31. Sun, Y. K., Chen, Z. H., Noh, H. J., Lee, D. J., Jung, H. G., Ren, Y., Wang, S., Yoon, C. S., Myung, S. T., Amine, K. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 2012, 11, 942–947.

    Article  CAS  Google Scholar 

  32. Kim, J. M., Zhang, X. H., Zhang, J. G., Manthiram, A., Meng, Y. S., Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 2021, 46, 155–182.

    Article  CAS  Google Scholar 

  33. Weigel, T., Schipper, F., Erickson, E. M., Susai, F. A., Markovsky, B., Aurbach, D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett. 2019, 4, 508–516.

    Article  CAS  Google Scholar 

  34. Alvarado, J., Schroeder, M. A., Zhang, M. H., Borodin, O., Gobrogge, E., Olguin, M., Ding, M. S., Gobet, M., Greenbaum, S., Meng, Y. S. et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 2018, 21, 341–353.

    Article  CAS  Google Scholar 

  35. Wang, Y., Wang, D. S., Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

    Article  CAS  Google Scholar 

  36. Meng, G., Zhang, J., Li, X. Y., Wang, D. S., Li, Y. D. Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Appl. Phys. Rev. 2021, 8, 021321.

    Article  CAS  Google Scholar 

  37. Chen, S. H., Wang, B. Q., Zhu, J. X., Wang, L. Q., Ou, H. H., Zhang, Z. D., Liang, X., Zheng, L. R., Zhou, L., Su, Y. Q. et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021, 21, 7325–7331.

    Article  CAS  Google Scholar 

  38. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.

  39. Xie, H. B., Du, K., Hu, G. R., Peng, Z. D., Cao, Y. B. The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors. J. Phys. Chem. C 2016, 120, 3235–3241.

    Article  CAS  Google Scholar 

  40. Xie, Q., Li, W. D., Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 2019, 31, 938–946.

    Article  CAS  Google Scholar 

  41. Jeong, M., Kim, H., Lee, W., Ahn, S. J., Lee, E., Yoon, W. S. Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode for Li rechargeable batteries. J. Power Sources 2020, 474, 228592.

    Article  CAS  Google Scholar 

  42. Mo, Y., Guo, L. J., Cao, B. K., Wang, Y. G., Zhang, L., Jia, X. B., Chen, Y. Correlating structural changes of the improved cyclability upon Nd-substitution in LiNi0.5Co0.2Mn0.3O2 cathode materials. Energy Storage Mater. 2019, 18, 260–268.

    Article  Google Scholar 

  43. Cui, Z. H., Xie, Q., Manthiram, A. Zinc-doped high-nickel, lowcobalt layered oxide cathodes for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 15324–15332.

    Article  CAS  Google Scholar 

  44. Ryu, H. H., Park, G. T., Yoon, C. S., Sun, Y. K. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. J. Mater. Chem. A 2019, 7, 18580–18588.

    Article  CAS  Google Scholar 

  45. Huang, Y., Liu, X., Yu, R. Z., Cao, S., Pei, Y., Luo, Z. G., Zhao, Q. L., Chang, B. B., Wang, Y., Wang, X. Y. Tellurium surface doping to enhance the structural stability and electrochemical performance of layered Ni-rich cathodes. ACS Appl. Mater. Interfaces 2019, 11, 40022–40033.

    Article  CAS  Google Scholar 

  46. Jamil, S., Bin Yousaf, A., Hee Yoon, S., Suk Han, D., Yang, L., Kasak, P., Wang, X. Y. Dual cationic modified high Ni-low co layered oxide cathode with a heteroepitaxial interface for high energy-density lithium-ion batteries. Chem. Eng. J. 2021, 416, 129118.

    Article  CAS  Google Scholar 

  47. Breuer, O., Chakraborty, A., Liu, J., Kravchuk, T., Burstein, L., Grinblat, J., Kauffman, Y., Gladkih, A., Nayak, P., Tsubery, M. et al. Understanding the role of minor molybdenum doping in LiNi0.5Co0.2Mn0.3O2 electrodes: From structural and surface analyses and theoretical modeling to practical electrochemical cells. ACS Appl. Mater. Interfaces 2018, 10, 29608–29621.

    Article  CAS  Google Scholar 

  48. Shen, Y. B., Wu, Y. Q., Xue, H. J., Wang, S. H., Yin, D. M., Wang, L. M., Cheng, Y. Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes. ACS Appl. Mater. Interfaces 2021, 13, 717–726.

    Article  CAS  Google Scholar 

  49. Yang, H. P., Wu, H. H., Ge, M. Y., Li, L. J., Yuan, Y. F., Yao, Q., Chen, J., Xia, L. F., Zheng, J. M., Chen, Z. Y. et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808825.

    Article  Google Scholar 

  50. Jia, G. F., Li, F. Q., Wang, J., Liu, S. Q., Yang, Y. L. Dual substitution strategy in Co-free layered cathode materials for superior lithium ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 18733–18742.

    Article  CAS  Google Scholar 

  51. Sun, H. B., Cao, Z. L., Wang, T. R., Lin, R., Li, Y. Y., Liu, X., Zhang, L. L., Lin, F., Huang, Y. H., Luo, W. Enabling high rate performance of Ni-rich layered oxide cathode by uniform titanium doping. Mater. Today Energy 2019, 13, 145–151.

    Article  Google Scholar 

  52. Shen, Y. B., Xue, H. J., Wang, S. H., Wang, Z. M., Zhang, D. Y., Yin, D. M., Wang, L. M., Cheng, Y. A highly promising high-nickel low-cobalt lithium layered oxide cathode material for highperformance lithium-ion batteries. J. Colloid Interface Sci. 2021, 597, 334–344.

    Article  CAS  Google Scholar 

  53. Han, B., Xu, S., Zhao, S., Lin, G. X., Feng, Y. Z., Chen, L. B., Ivey, D. G., Wang, P., Wei, W. F. Enhancing the structural stability of Ni-rich layered oxide cathodes with a preformed Zr-concentrated defective nanolayer. ACS Appl. Mater. Interfaces 2018, 10, 39599–39607.

    Article  CAS  Google Scholar 

  54. Shen, Y. B., Xue, H. J., Wang, S. H., Zhang, D. Y., Yin, D. M., Wang, L. M., Cheng, Y. Ammonia-low coprecipitation synthesis of lithium layered oxide cathode material for high-performance battery. Chem. Eng. J. 2021, 411, 128487.

    Article  CAS  Google Scholar 

  55. Hong, C. Y., Leng, Q. Y., Zhu, J. P., Zheng, S. Y., He, H. J., Li, Y. X., Liu, R., Wan, J. J., Yang, Y. Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries. J. Mater. Chem. A 2020, 8, 8540–8547.

    Article  CAS  Google Scholar 

  56. Lee, W., Muhammad, S., Kim, T., Kim, H., Lee, E., Jeong, M., Son, S. H., Ryou, J. H., Yoon, W. S. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries. Adv. Energy Mater. 2018, 8, 1701788.

    Article  Google Scholar 

  57. Li, J. Y., Manthiram, A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1902731.

    Article  CAS  Google Scholar 

  58. Wu, F., Liu, N., Chen, L., Su, Y. F., Tan, G. Q., Bao, L. Y., Zhang, Q. Y., Lu, Y., Wang, J., Chen, S. et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 2019, 59, 50–57.

    Article  CAS  Google Scholar 

  59. Xiao, Y. G., Liu, T. C., Liu, J. J., He, L. H., Chen, J., Zhang, J. R., Luo, P., Lu, H. L., Wang, R., Zhu, W. M. et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials. Nano Energy 2018, 49, 77–85.

    Article  CAS  Google Scholar 

  60. Zheng, J. X., Ye, Y. K., Liu, T. C., Xiao, Y. G., Wang, C. M., Wang, F., Pan, F. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control. Acc. Chem. Res. 2019, 52, 2201–2209.

    Article  CAS  Google Scholar 

  61. Wu, F. L., Kim, G. T., Kuenzel, M., Zhang, H., Asenbauer, J., Geiger, D., Kaiser, U., Passerini, S. Elucidating the effect of iron doping on the electrochemical performance of cobalt-free lithium-rich layered cathode materials. Adv. Energy Mater. 2019, 9, 1902445.

    Article  CAS  Google Scholar 

  62. Mu, L. Q., Lin, R. Q., Xu, R., Han, L. L., Xia, S. H., Sokaras, D., Steiner, J. D., Weng, T. C., Nordlund, D., Doeff, M. M. et al. Oxygen release induced chemomechanical breakdown of layered cathode materials. Nano Lett. 2018, 18, 3241–3249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Chang, Wanqiang Liu or Zechao Zhuang.

Electronic supplementary material

12274_2021_4035_MOESM1_ESM.pdf

Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Sun, Y., Chu, C. et al. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 15, 4091–4099 (2022). https://doi.org/10.1007/s12274-021-4035-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4035-2

Keywords

Navigation