Skip to main content
Log in

Flexible Hf0.5Zr0.5O2 ferroelectric thin films on polyimide with improved ferroelectricity and high flexibility

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible memory devices are promising for information storage and data processing applications in portable, wearable, and smart electronics operating under curved conditions. In this work, we realized high-performance flexible ferroelectric capacitors based on Hf0.5Zr0.5O2 (HZO) thin film by depositing a buffer layer of Al2O3 on polyimide (PI) substrates using atomic layer deposition (ALD). The flexible ferroelectric HZO films exhibit high remnant polarization (Pr) of 21 µC/cm2. Furthermore, deterioration of polarization, retention, and endurance performance was not observed even at a bending radius of 2 mm after 5,000 bending cycles. This work marks a critical step in the development of high-performance flexible HfO2-based ferroelectric memories for next-generation wearable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, S. T.; Peng, H. Y.; Sun, Q. J.; Venkatesh, S.; Chung, K. S.; Lau, S. C.; Zhou, Y.; Roy, V. A. L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375.

    Article  Google Scholar 

  2. Han, S. T.; Zhou, Y.; Roy, V. A. L. Towards the development of flexible non-volatile memories. Adv. Mater. 2013, 25, 5425–5449.

    Article  CAS  Google Scholar 

  3. Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

    Article  CAS  Google Scholar 

  4. Jung, Y. H.; Chang, T. H.; Zhang, H. L.; Yao, C. H.; Zheng, Q. F.; Yang, V. W.; Mi, H. Y.; Kim, M.; Cho, S. J.; Park, D. W. et al. Highperformance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170.

    Article  Google Scholar 

  5. Cheung, Y. F.; Li, K. H.; Choi, H. W. Flexible free-standing III-nitride thin films for emitters and displays. ACS Appl. Mater. Interfaces 2016, 8, 21440–21445.

    Article  CAS  Google Scholar 

  6. Bauer, S.; Bauer-Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwödiauer, R. 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Adv. Mater. 2014, 26, 149–162.

    Article  CAS  Google Scholar 

  7. Kim, C. S.; Yang, H. M.; Lee, J.; Lee, G. S.; Choi, H.; Kim, Y. J.; Lim, S. H.; Cho, S. H.; Cho, B. J. Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett. 2018, 3, 501–507.

    Article  CAS  Google Scholar 

  8. Scott, J. F. Applications of modern ferroelectrics. Science 2007, 315, 954–959.

    Article  CAS  Google Scholar 

  9. Bez, R.; Pirovano, A. Non-volatile memory technologies: Emerging concepts and new materials. Mater. Sci. Semicond. Process. 2004, 7, 349–355.

    Article  CAS  Google Scholar 

  10. Xu, T.; Xiang, L. Y.; Xu, M. L.; Xie, W. F.; Wang, W. Excellent low-voltage operating flexible ferroelectric organic transistor nonvolatile memory with a sandwiching ultrathin ferroelectric film. Sci. Rep. 2017, 7, 8890.

    Article  Google Scholar 

  11. Lee, G. G.; Tokumitsu, E.; Yoon, S. M.; Fujisaki, Y.; Yoon, J. W.; Ishiwara, H. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene). Appl. Phys. Lett. 2011, 99, 012901.

    Article  Google Scholar 

  12. Xu, M. L.; Guo, S. X.; Xiang, L. Y.; Xu, T.; Xie, W. F.; Wang, W. High mobility flexible ferroelectric organic transistor nonvolatile memory with an ultrathin AlOx interfacial layer. IEEE Trans. Electron Dev. 2018, 65, 1113–1118.

    Article  CAS  Google Scholar 

  13. Khan, M. A.; Bhansali, U. S.; Alshareef, H. N. Fabrication and characterization of all-polymer, transparent ferroelectric capacitors on flexible substrates. Org. Electron. 2011, 12, 2225–2229.

    Article  CAS  Google Scholar 

  14. Kim, W. Y.; Lee, H. C. Stable ferroelectric poly(vinylidene fluoridetrifluoroethylene) film for flexible nonvolatile memory application. IEEE Electron Dev. Lett. 2012, 33, 260–262.

    Article  CAS  Google Scholar 

  15. Bakaul, S. R.; Serrao, C. R.; Lee, M.; Yeung, C. W.; Sarker, A.; Hsu, S. L.; Yadav, A. K.; Dedon, L.; You, L.; Khan, A. I. et al. Single crystal functional oxides on silicon. Nat. Commun. 2016, 7, 10547.

    Article  CAS  Google Scholar 

  16. Ghoneim, M. T.; Zidan, M. A.; Alnassar, M. Y.; Hanna, A. N.; Kosel, J.; Salama, K. N.; Hussain, M. M. Thin PZT-based ferroelectric capacitors on flexible silicon for nonvolatile memory applications. Adv. Electron. Mater. 2015, 1, 1500045.

    Article  Google Scholar 

  17. Bretos, I.; Jiménez, R.; Wu, A. Y.; Kingon, A. I.; Vilarinho, P. M.; Calzada, M. L. Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics. Adv. Mater. 2014, 26, 1405–1409.

    Article  CAS  Google Scholar 

  18. Rho, J.; Kim, S. J.; Heo, W. Lee, N. E.; Lee, H. S.; Ahn, J. H. PbZrxTi1−xO3 ferroelectric thin-film capacitors for flexible nonvolatile memory applications. IEEE Electron Dev. Lett. 2010, 31, 1017–1019.

    Article  CAS  Google Scholar 

  19. Jiang, J.; Bitla, Y.; Huang, C. W.; Do, T. H.; Liu, H. J.; Hsieh, Y. H.; Ma, C. H.; Jang, C. Y.; Lai, Y. H.; Chiu, P. W. et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 2017, 3, e1700121.

  20. Ren, C. L.; Zhong, G. K.; Xiao, Q. Tan, C. B.; Feng, M.; Zhong, X. L.; An, F.; Wang, J. B.; Zi, M. F.; Tang, M. K. et al. Highly robust flexible ferroelectric field effect transistors operable at high temperature with low-power consumption. Adv. Funct. Mater. 2020, 30, 1906131.

    Article  CAS  Google Scholar 

  21. Tsai, M. F.; Jiang, J.; Shao, P. W.; Lai, Y. H.; Chen, J. W.; Ho, S. Z.; Chen, Y. C.; Tsai, D. P.; Chu, Y. H. Oxide heteroepitaxy-based flexible ferroelectric transistor. ACS Appl. Mater. Interfaces 2019, 11, 25882–25890.

    Article  CAS  Google Scholar 

  22. Gao, H.; Yang, Y. X.; Wang, Y. J.; Chen, L.; Wang, J. L.; Yuan, G. L.; Liu, J. M. Transparent, flexible, fatigue-free, optical-read, and nonvolatile ferroelectric memories. ACS Appl. Mater. Interfaces 2019, 11, 35169–35176.

    Article  CAS  Google Scholar 

  23. Yang, C. H.; Han, Y. J.; Qian, J.; Cheng, Z. X. Flexible, Temperature-stable, and fatigue-endurable PbZr0.52Ti0.48O3 ferroelectric film for nonvolatile memory. Adv. Electron. Mater. 2019, 5, 1900443.

    Article  CAS  Google Scholar 

  24. Zheng, M.; Li, X. Y.; Ni, H.; Li, X. M.; Gao, J. van der Waals epitaxy for highly tunable all-inorganic transparent flexible ferroelectric luminescent films. J. Mater. Chem. C 2019, 7, 8310–8315.

    Article  CAS  Google Scholar 

  25. Mikolajick, T.; Müller, S.; Schenk, T.; Yurchuk, E.; Slesazeck, S. Schröder, U.; Flachowsky, S.; van Bentum, R.; Kolodinski, S. Polakowski, P. et al. Doped hafnium oxide-an enabler for ferroelectric field effect transistors. Adv. Sci. Technol. 2014, 95, 136–145.

    Article  Google Scholar 

  26. Müller, J.; Polakowski, P.; Mueller, S.; Mikolajick, T. Ferroelectric hafnium oxide based materials and devices: Assessment of current status and future prospects. ECS J. Solid State Sci. Technol. 2015, 4, N30–N35.

    Article  Google Scholar 

  27. Park, M. H.; Lee, Y. H.; Kim, H. J.; Moon, T.; Kim, K. D.; Müller, J.; Kersch, A. Schroeder, U.; Mikolajick, T. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 2015, 27, 1811–1831.

    Article  CAS  Google Scholar 

  28. Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.

    Article  Google Scholar 

  29. Wei, Y. F.; Nukala, P.; Salverda, M.; Matzen, S.; Zhao, H. J.; Momand, J.; Everhardt, A. S.; Agnus, G.; Blake, G. R.; Lecoeur, P. et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 2018, 17, 1095–1100.

    Article  CAS  Google Scholar 

  30. Müller, J.; Böscke, T. S.; Müller, S.; Yurchuk, E.; Polakowski, P.; Paul, J.; Martin, D.; Schenk, T.; Khullar, K.; Kersch, A. et al. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. In International Electron Devices Meeting (IEDM), Washington, DC, USA, 2013, pp 10.8. 1–10.8. 4.

  31. Cheema, S. S.; Kwon, D.; Shanker, N.; dos Reis, R.; Hsu, S. L.; Xiao, J.; Zhang, H. G.; Wagner, R.; Datar, A. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020, 580, 478–482.

    Article  CAS  Google Scholar 

  32. Tomida, K.; Kita, K.; Toriumi, A. Dielectric constant enhancement due to Si incorporation into HfO2. Appl. Phys. Lett. 2006, 89, 142902.

    Article  Google Scholar 

  33. Fischer, D.; Kersch, A. The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles. Appl. Phys. Lett. 2008, 92, 012908.

    Article  Google Scholar 

  34. Müller, J.; Böscke, T. S.; Schröder, U.; Mueller, S.; Bräuhaus, D.; Böttger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318–4323.

    Article  Google Scholar 

  35. Liu, H. F.; Lu, T. Q.; Li, Y. X.; Ju, Z. Y.; Zhao, R. T.; Li, J. Z.; Shao, M. H.; Zhang, H. N.; Liang, R. R.; Wang, X. R. et al. Flexible Quasi-van der Waals ferroelectric hafnium-Based oxide for integrated high-performance nonvolatile memory. Adv. Sci. 2020, 7, 2001266.

    Article  CAS  Google Scholar 

  36. Liu, W. Y.; Liao, J. J.; Jiang, J.; Zhou, Y. C.; Chen, Q.; Mo, S. T.; Yang, Q.; Peng, Q. X.; Jiang, L. M. Highly stable performance of flexible Hf0.6Zr0.4O2 ferroelectric thin films under multi-service conditions. J. Mater. Chem. C 2020, 8, 3878–3886.

    Article  CAS  Google Scholar 

  37. Xiao, W. W.; Liu, C.; Peng, Y.; Zheng, S. Z.; Feng, Q.; Zhang, C. F.; Zhang, J. C.; Hao, Y.; Liao, M.; Zhou, Y. C. Thermally stable and radiation hard ferroelectric Hf0.5Zr0.5O2 thin films on muscovite mica for flexible nonvolatile memory applications. ACS Appl. Electron. Mater. 2019, 1, 919–927.

    Article  CAS  Google Scholar 

  38. Liu, W. L.; Wang, H. Flexible oxide epitaxial thin films for wearable electronics: Fabrication, physical properties, and applications. J. Materiomics 2020, 6, 385–396.

    Article  Google Scholar 

  39. Walia, S.; Shah, C. M.; Gutruf, P.; Nili, H.; Chowdhury, D. R.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales. Appl. Phy. Rev. 2015, 2, 011303.

    Article  Google Scholar 

  40. Yu, H.; Chung, C. C.; Shewmon, N.; Ho, S.; Carpenter, J. H.; Larrabee, R.; Sun, T. L.; Jones, J. L.; Ade, H.; O’Connor, B. T. et al. Flexible inorganic ferroelectric thin films for nonvolatile memory devices. Adv. Funct. Mater. 2017, 27, 1700461.

    Article  Google Scholar 

  41. Cao, R. R.; Song, B.; Shang, D. S.; Yang, Y.; Luo, Q.; Wu, S. Y.; Li, Y.; Wang, Y.; Lv, H. B.; Liu, Q. et al. Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode. IEEE Electron Dev. Lett. 2019, 40, 1744–1747.

    Article  CAS  Google Scholar 

  42. Lee, S. H.; Cho, S. H.; Kim, H. J.; Kim, S. H.; Lee, S. G.; Song, K. H.; Song, P. K. Properties of ITO (indium tin oxide) film deposited by ion-beam-assisted sputter. Mol. Cryst. Liq. Cryst. 2012, 564, 185–190.

    Article  CAS  Google Scholar 

  43. Wang, Z. Y.; Zhang, R. J.; Lu, H. L; Chen, X.; Sun, Y.; Zhang, Y.; Wei, Y. F.; Xu, J. P.; Wang, S. Y.; Zheng, Y. X. et al. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition. Nanoscale Res. Lett. 2015, 10, 46.

    Article  Google Scholar 

  44. Groner, M. D.; Fabreguette, F. H.; Elam, J. W.; George, S. M. Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 2004, 16, 639–645.

    Article  CAS  Google Scholar 

  45. Ramos, M. M. D. Theoretical study of metal-polyimide interfacial properties. Vacuum 2002, 64, 255–260.

    Article  CAS  Google Scholar 

  46. Naganuma, H.; Inoue, Y.; Okamura, S. Estimation of leakage current density and remanent polarization of BiFeO3 films with low resistivity by positive, up, negative, and down measurements. Jpn. J. Appl. Phys. 2008, 47, 5558–5560.

    Article  CAS  Google Scholar 

  47. Rojas, J. P.; Sevilla, G. A. T.; Hussain, M. M. Can we build a truly high performance computer which is flexible and transparent? Sci. Rep. 2013, 3, 2609.

    Article  Google Scholar 

  48. Kim, S. J.; Narayan, D.; Lee, J. G.; Mohan, J.; Lee, J. S.; Lee, J.; Kim, H. S.; Byun, Y. C.; Lucero, A. T.; Young, C. D. et al. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget. Appl. Phys. Lett. 2017, 111, 242901.

    Article  Google Scholar 

  49. Jang, B. C.; Seong, H.; Kim, S. K.; Kim, J. Y.; Koo, B. J.; Choi, J.; Yang, S. Y.; Im, S. G.; Choi, S. Y. Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition. ACS Appl. Mater. Interfaces 2016, 8, 12951–12958.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 61922083, 61804167, 61834009, 61904200, and 61821091), and in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB44000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, Y., Yuan, P. et al. Flexible Hf0.5Zr0.5O2 ferroelectric thin films on polyimide with improved ferroelectricity and high flexibility. Nano Res. 15, 2913–2918 (2022). https://doi.org/10.1007/s12274-021-3896-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3896-8

Keywords

Navigation