Skip to main content
Log in

Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ordered porous solid strong bases (OPSSBs) have attracted great research interest due to the excellent performance as heterogeneous catalysts in various reactions. The main obstacle for fabricating OPSSBs is the requirement of high temperature to produce strong basicity on ordered porous materials. For example, the temperatures of 600–650 °C are required for the decomposition of base precursor NaNO3 to basic sites on mesoporous silica SBA-15 and zeolite Y. Such high decomposition temperatures are energy-intensive and harmful to the structure of supports. Herein, we report the fabrication of OPSSBs by utilizing the redox interaction between base precursor and low-valence metal centers (e.g., Cr3+) in metal-organic frameworks (MOFs). The base precursor NaNO3 on MIL-101(Cr) can be converted to basic sites entirely at 300 °C, which is quite lower than those of the conventional thermal conversion on SBA-15 and zeolite Y (600–650 °C). The exploration on decomposition mechanism reveals that the valence change of Cr3+ to Cr6+ takes place during the conversion of NaNO3 to basic sites. In this way, MOFs-derived base catalysts have been synthesized successfully by the host–guest redox strategy and exhibit high catalytic activity in typical base-catalyzed reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, L.; Liu, X. Q.; Jiang, H. L.; Sun, L. B. Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev. 2017, 117, 8129–8176.

    Article  CAS  Google Scholar 

  2. Sun, L. B.; Liu, X. Q.; Zhou, H. C. Design and fabrication of mesoporous heterogeneous basic catalysts. Chem. Soc. Rev. 2015, 44, 5092–5147.

    Article  CAS  Google Scholar 

  3. Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional metalorganic framework catalysts: Synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46, 126–157.

    Article  CAS  Google Scholar 

  4. Peng, S. S.; Yang, M. H.; Zhang, W. K.; Li, X. N.; Wang, C.; Yue, M. B. Fabrication of ordered mesoporous solid super base with high thermal stability from mesoporous carbons. Microporous Mesoporous Mater. 2017, 242, 18–24.

    Article  CAS  Google Scholar 

  5. Li, T. T.; Liu, Y.; Qi, S. C.; Liu, X. Q.; Huang, L.; Sun, L. B. Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base. J. Colloid Interface Sci. 2018, 526, 366–373.

    Article  CAS  Google Scholar 

  6. Liu, W.; Zhu, L.; Jiang, Y.; Liu, X. Q.; Sun, L. B. Direct fabrication of strong basic sites on ordered nanoporous materials: Exploring the possibility of metal-organic frameworks. Chem. Mater. 2018, 30, 1686–1694.

    Article  CAS  Google Scholar 

  7. Bitter, J. H.; Seshan, K.; Lercher, J. A. Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. J. Catal. 1997, 176, 93–101.

    Article  Google Scholar 

  8. Li, W.; Jiang, Z. J.; Ma, F. Y.; Su, F.; Chen, L.; Zhang, S. Q.; Guo, Y. H. Design of mesoporous SO42-/ZrO2-SiO2(Et) hybrid material as an efficient and reusable heterogeneous acid catalyst for biodiesel production. Green Chem. 2010, 12, 2135–2138.

    Article  CAS  Google Scholar 

  9. Velu, S.; Suzuki, K.; Okazaki, M.; Kapoor, M. P.; Osaki, T.; Ohashi, F. Oxidative steam reforming of methanol over cuznal(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation. J. Catal. 2000, 194, 373–384.

    Article  CAS  Google Scholar 

  10. Maillet, T.; Barbier, J. Jr.; Gelin, P.; Praliaud, H.; Duprez, D. Effects of pretreatments on the surface composition of alumina-supported Pd-Rh catalysts. J. Catal. 2001, 202, 367–378.

    Article  CAS  Google Scholar 

  11. Liu, X. Y.; Sun, L. B.; Lu, F.; Liu, X. D.; Liu, X. Q. Low temperature generation of strong basicity via an unprecedented guesthost redox interaction. Chem. Commun. 2013, 49, 8087–8089.

    Article  CAS  Google Scholar 

  12. Zhu, L.; Lu, F.; Liu, X. D.; Liu, X. Q.; Sun, L. B. A new redox strategy for low-temperature formation of strong basicity on mesoporous silica. Chem. Commun. 2015, 51, 10058–10061.

    Article  CAS  Google Scholar 

  13. Liu, X. Y.; Sun, L. B.; Liu, X. D.; Li, A. G.; Lu, F.; Liu, X. Q. Low temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer. ACS Appl. Mater. Interfaces 2013, 5, 9823–9829.

    Article  CAS  Google Scholar 

  14. Peng, S. S.; Lu, J.; Li, T. T.; Tan, P.; Gu, C.; Wu, Z. Y.; Liu, X. Q.; Sun, L. B. Significant decrease in activation temperature for the generation of strong basicity: A strategy of endowing supports with reducibility. Inorg. Chem. 2019, 58, 8003–8011.

    Article  Google Scholar 

  15. Wang, X. G.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. Preparation of ordered large pore SBA-15 silica functionalized with aminopropyl groups through one-pot synthesis. Chem. Commun. 2004, 2762–2763.

    Google Scholar 

  16. Xia, Y. D.; Mokaya, R. Highly ordered mesoporous silicon oxynitride materials as base catalysts. Angew. Chem., Int. Ed. 2003, 42, 2639–2644.

    Article  CAS  Google Scholar 

  17. Li, X. N.; Peng, S. S.; Feng, L. N.; Lu, S. Q.; Ma, L. J.; Yue, M. B. One-pot synthesis of acidic and basic bifunctional catalysts to promote the conversion of ethanol to 1-butanol. Microporous Mesoporous Mater. 2018, 261, 44–50.

    Article  CAS  Google Scholar 

  18. Liu, N.; Wu, Z. M.; Li, M.; Li, S. S.; Li, Y. F.; Yu, R. D.; Pan, L. S.; Liu, Y. J. A novel strategy for constructing mesoporous solid superbase catalysts: Bimetallic Al-La oxides supported on SBA-15 modified with KF. Catal. Sci. Technol. 2017, 7, 725–733.

    Article  CAS  Google Scholar 

  19. Peng, S. S.; Wu, J. K.; Peng, A. Z.; Li, Y. X.; Gu, C.; Yue, M. B.; Liu, X. Q.; Sun, L. B. Fabrication of solid strong bases at decreased temperature by doping low-valence Cr3+ into supports. Appl. Catal. A: Gen. 2019, 584, 117153.

    Article  CAS  Google Scholar 

  20. Zhu, G. Z.; Shi, S.; Liu, M.; Zhao, L.; Wang, M.; Zheng, X.; Gao, J.; Xu, J. Formation of strong basicity on covalent triazine frameworks as catalysts for the oxidation of methylene compounds. ACS Appl. Mater. Interfaces 2018, 10, 12612–12617.

    Article  CAS  Google Scholar 

  21. Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

    Article  CAS  Google Scholar 

  22. Xiao, Z. Y.; Mei, Y. J.; Yuan, S.; Mei, H.; Xu, B.; Bao, Y. X.; Fan, L. L.; Kang, W. P.; Dai, F. N.; Wang, R., et al. Controlled hydrolysis of metal-organic frameworks: Hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano 2019, 13, 7024–7030.

    Article  CAS  Google Scholar 

  23. Pang, J. D.; Yuan, S.; Qin, J. S.; Wu, M. Y.; Lollar, C. T.; Li, J. L.; Huang, N.; Li, B.; Zhang, P.; Zhou, H. C. Enhancing poreenvironment complexity using a trapezoidal linker: Toward stepwise assembly of multivariate quinary metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 12328–12332.

    Article  CAS  Google Scholar 

  24. Zeng, X. M.; Yan, S. Q.; Chen, P.; Du, W.; Liu, B. F. Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy. Nano Res. 2020, 13, 1527–1535.

    Article  CAS  Google Scholar 

  25. Jiang, Y.; Tan, P.; Qi, S. C.; Liu, X. Q.; Yan, J. H.; Fan, F.; Sun, L. B. Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: Efficient adsorbents for tailorable CO2 capture. Angew. Chem., Int. Ed. 2019, 58, 6600–6604.

    Article  CAS  Google Scholar 

  26. Sun, Q.; Tang, Y. Q.; Aguila, B.; Wang, S.; Xiao, F. S.; Thallapally, P. K.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Q. Reaction environment modification in covalent organic frameworks for catalytic performance enhancement. Angew. Chem., Int. Ed. 2019, 58, 8670–8675.

    Article  CAS  Google Scholar 

  27. Gao, W. Y.; Thiounn, T.; Wojtas, L.; Chen, Y. S.; Ma, S. Q. Two highly porous single-crystalline zirconium-based metal-organic frameworks. Sci. China Chem. 2016, 59, 980–983.

    Article  CAS  Google Scholar 

  28. Peng, Y.; Yang, W. S. Metal-organic framework nanosheets: A class of glamorous low-dimensional materials with distinct structural and chemical natures. Sci. China Chem. 2019, 62, 1561–1575.

    Article  CAS  Google Scholar 

  29. Chen, Z. J.; Li, P. H.; Zhang, X.; Mian, M. R.; Wang, X. J.; Li, P.; Liu, Z. C.; O’ Keeffe, M.; Stoddart, J. F.; Farha, O. K. Reticular exploration of uranium-based metal-organic frameworks with hexacarboxylate building units. Nano Res. 2021, 14, 376–380.

    Article  CAS  Google Scholar 

  30. Jiang, Y.; Park, J.; Tan, P.; Feng, L.; Liu, X. Q.; Sun, L. B.; Zhou, H. C. Maximizing photoresponsive efficiency by isolating metalorganic polyhedra into confined nanoscaled spaces. J. Am. Chem. Soc. 2019, 141, 8221–8227.

    Article  CAS  Google Scholar 

  31. Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

    Article  CAS  Google Scholar 

  32. Niu, Z.; Cui, X. L.; Pham, T.; Lan, P. C.; Xing, H. B.; Forrest, K. A.; Wojtas, L.; Space, B.; Ma, S. Q. A metal-organic framework based methane nano-trap for the capture of coal-mine methane. Angew. Chem., Int. Ed. 2019, 58, 10138–10141.

    Article  CAS  Google Scholar 

  33. Li, J. K.; Lv, F.; Li, J. X.; Li, Y. X.; Gao, J. D.; Luo, J.; Xue, F.; Ke, Q. F.; Xu, H. Cobalt-based metal-organic framework as a dual cooperative controllable release system for accelerating diabetic wound healing. Nano Res. 2020, 13, 2268–2279.

    Article  CAS  Google Scholar 

  34. Jiang, J. C.; Yaghi, O. M. Brønsted acidity in metal-organic frameworks. Chem. Rev. 2015, 115, 6966–6997.

    Article  CAS  Google Scholar 

  35. Leo, P.; Orcajo, G.; Briones, D.; Rodríguez-Diéguez, A.; Choquesillo-Lazarte, D.; Calleja, G.; Martinez, F. A double basic Sramino containing MOF as a highly stable heterogeneous catalyst. Dalton Trans. 2019, 48, 11556–11564.

    Article  CAS  Google Scholar 

  36. Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525–8529.

    Article  CAS  Google Scholar 

  37. Gascon, J.; Aktay, U.; Hernandez-Alonso, M. D.; Van Klink, G. P. M.; Kapteijn, F. Amino-based metal-organic frameworks as stable, highly active basic catalysts. J. Catal. 2009, 261, 75–87.

    Article  CAS  Google Scholar 

  38. Flaig, R. W.; Popp, T. M. O.; Fracaroli, A. M.; Kapustin, E. A.; Kalmutzki, M. J.; Altamimi, R. M.; Fathieh, F.; Reimer, J. A.; Yaghi, O. M. The chemistry of CO2 capture in an aminefunctionalized metal-organic framework under dry and humid conditions. J. Am. Chem. Soc. 2017, 139, 12125–12128.

    Article  CAS  Google Scholar 

  39. Savonnet, M.; Bazer-Bachi, D.; Bats, N.; Perez-Pellitero, J.; Jeanneau, E.; Lecocq, V.; Pinel, C.; Farrusseng, D. Generic postfunctionalization route from amino-derived metal-organic frameworks. J. Am. Chem. Soc. 2010, 132, 4518–4519.

    Article  CAS  Google Scholar 

  40. Li, T. T.; Gao, X. J.; Qi, S. C.; Huang, L.; Peng, S. S.; Liu, W.; Liu, X. Q.; Sun, L. B. Potassium-incorporated mesoporous carbons: Strong solid bases with enhanced catalytic activity and stability. Catal. Sci. Technol. 2018, 8, 2794–2801.

    Article  CAS  Google Scholar 

  41. Rodriguez-Gomez, A.; Holgado, J. P.; Caballero, A. Cobalt carbide identified as catalytic site for the dehydrogenation of ethanol to acetaldehyde. ACS Catal. 2017, 7, 5243–5247.

    Article  CAS  Google Scholar 

  42. Tan, H. Z.; Chen, Z. N.; Xu, Z. N.; Sun, J.; Wang, Z. Q.; Si, R.; Zhuang, W.; Guo, G. C. Synthesis of high-performance and highstability Pd(ii)/nay catalyst for CO direct selective conversion to dimethyl carbonate by rational design. ACS Catal. 2019, 9, 3595–3603.

    Article  CAS  Google Scholar 

  43. Chen, Y. D.; Wang, H.; Qin, Z. X.; Tian, S. L.; Ye, Z. B.; Ye, L.; Abroshan, H.; Li, G. TixCe1-xO2 nanocomposites: A monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate. Green Chem. 2019, 21, 4642–4649.

    Article  CAS  Google Scholar 

  44. Wang, Y.; Liu, C. L.; Sun, J. H.; Yang, R. Z.; Dong, W. S. Ordered mesoporous BaCO3/C-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Sci. China Chem. 2015, 58, 708–715.

    Article  Google Scholar 

  45. Guo, M. Y.; Liu, Q. L.; Zhao, P. P.; Han, J. F.; Li, X.; Ha, Y.; Fu, Z. C.; Song, C. F.; Ji, N.; Liu, C. X. et al. Promotional effect of SO2 on Cr2O3 catalysts for the marine NH3-SCR reaction. Chem. Eng. J. 2019, 361, 830–838.

    Article  CAS  Google Scholar 

  46. Wang, A. Y.; Guo, Y. L.; Gao, F.; Peden, C. H. F. Ambienttemperature no oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: Significant promoting effect of ZrO2. Appl. Catal. B: Environ. 2017, 202, 706–714.

    Article  CAS  Google Scholar 

  47. Wegrzyniak, A.; Jarczewski, S.; Wach, A.; Hedrzak, E.; Kustrowski, P.; Michorczyk, P. Catalytic behaviour of chromium oxide supported on CMK-3 carbon replica in the dehydrogenation propane to propene. Appl. Catal. A: Gen. 2015, 508, 1–9.

    Article  CAS  Google Scholar 

  48. Wen, T.; Wang, J.; Yu, S. J.; Chen, Z. S.; Hayat, T.; Wang, X. K. Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(V), Cr(VI), humic acid, and dyes. ACS Sustainable Chem. Eng. 2017, 5, 4371–4380.

    Article  CAS  Google Scholar 

  49. Corro, G.; Sánchez, N.; Pal, U.; Cebada, S.; Fierro, J. L. G. Solarirradiation driven biodiesel production using Cr/SiO2 photocatalyst exploiting cooperative interaction between Cr6+ and Cr3+ moieties. Appl. Catal. B:Environ. 2017, 203, 43–52.

    Article  CAS  Google Scholar 

  50. Feng, F.; Yang, W. Y.; Gao, S.; Sun, C. X.; Li, Q. Postillumination activity in a single-phase photocatalyst of Mo-doped TiO2 nanotube array from its photocatalytic “memory”. ACS Sustainable Chem. Eng. 2018, 6, 6166–6174.

    Article  CAS  Google Scholar 

  51. Zhao, X. H.; Wang, X. L. Synthesis, characterization and catalytic application of Cr-SBA-1 mesoporous molecular sieves. J. Mole. Catal. A:Chem. 2007, 261, 225–231.

    Article  CAS  Google Scholar 

  52. Sun, B.; Reddy, E. P.; Smirniotis, P. G. Effect of the Cr6+ concentration in Cr-incorporated TiO2-loaded MCM-41 catalysts for visible light photocatalysis. Appl. Catal. B: Environ. 2005, 57, 139–149.

    Article  CAS  Google Scholar 

  53. Li, P. P.; Lang, W. Z.; Xia, K.; Luan, L.; Yan, X.; Guo, Y. J. The promotion effects of Ni on the properties of Cr/Al catalysts for propane dehydrogenation reaction. Appl. Catal. A: Gen. 2016, 522, 172–179.

    Article  CAS  Google Scholar 

  54. Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. A.; Han, A. J., et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem., Int. Ed. 2018, 57, 8614–8618.

    Article  CAS  Google Scholar 

  55. Zhao, J. J.; Boada, R.; Cibin, G.; Palet, C. Enhancement of selective adsorption of Cr species via modification of pine biomass. Sci. Total Environ. 2021, 756, 143816.

    Article  CAS  Google Scholar 

  56. Luo, E. G.; Zhang, H.; Wang, X.; Gao, L. Q.; Gong, L. Y.; Zhao, T.; Jin, Z.; Ge, J. J.; Jiang, Z.; Liu, C. P., et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew. Chem., Int. Ed 2019, 58, 12469–12475.

    Article  CAS  Google Scholar 

  57. Vieira, R. S.; Meneghetti, E.; Baroni, P.; Guibal, E.; De La Cruz, V. M. G.; Caballero, A.; Rodríguez-Castellón, E.; Beppu, M. M. Chromium removal on chitosan-based sorbents-an EXAFS/XANES investigation of mechanism. Mater. Chem. Phys. 2014, 146, 412–417.

    Article  CAS  Google Scholar 

  58. Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H., et al. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2016, 55, 6708–6712.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Qin Liu or Lin-Bing Sun.

Electronic Supplementary Material

12274_2021_3892_MOESM1_ESM.pdf

Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, SS., Shao, XB., Li, YX. et al. Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Res. 15, 2905–2912 (2022). https://doi.org/10.1007/s12274-021-3892-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3892-z

Keywords

Navigation