Skip to main content
Log in

Self-templated formation of twin-like metal-organic framework nanobricks as pre-catalysts for efficient water oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fabrication of single-crystalline metal-organic framework (MOF) hollow nanostructures with two-dimensional (2D) morphologies is a challenging task. Herein, twin-like MOF nanobricks, a quasi-hollow 2D architecture, with multi-metal nodes and replaceable organic ligands, are uniformly and firmly grown on conductive Ni foam through a generic one-pot approach. The formation process of twin-like MOF nanobricks mainly includes selective epitaxial growth of Fe-rich MOF layer and simultaneously dissolution of the pre-formed Ni-rich metal-organic frameworks (MOFs), all of which can be ascribed to a special self-templated mechanism. The fantastic structural merits of twin-like MOF nanobrick arrays, featuring highly exposed active sites, remarkable electrical conductivity, and hierarchical porosities, enable this material for efficient electrocatalysis. Using bimetallic NiFe-MOFs grown on Ni foam as an example, the resultant twin-like nanobrick arrays can be directly utilized as three-dimensional (3D) integrated electrode for high-performance water oxidation in 1 M KOH with a low overpotential, fast reaction kinetics (28.5 mV·dec−1), and superb stability. Interestingly, the unstable NiFe-MOFs were served as an oxygen evolution reaction (OER) pre-catalyst and the single-crystalline NiFe-MOF precursor can be in-situ topochemically regulated into porous and low-crystalline NiFeOx nanosheets during the OER process. This work extends the hollowing strategy to fabricate hollow MOFs with 2D architectures and highlights their direct utilization for advanced electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

    Article  Google Scholar 

  2. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.

    Article  CAS  Google Scholar 

  3. Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

    Article  CAS  Google Scholar 

  4. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metalorganic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    Article  CAS  Google Scholar 

  5. Chen, Z. J.; Cao, G. X.; Gan, L. Y.; Dai, H.; Xu, N.; Zang, M. J.; Dai, H. B.; Wu, H.; Wang, P. Highly dispersed platinum on honeycomb-like NiO@Ni film as a synergistic electrocatalyst for the hydrogen evolution reaction. ACS Catal. 2018, 8, 8866–8872.

    Article  CAS  Google Scholar 

  6. Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

    Article  CAS  Google Scholar 

  7. Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

    Article  CAS  Google Scholar 

  8. Yang, Y. C.; Yang, Y. W.; Liu, Y. Y.; Zhao, S. L.; Tang, Z. Y. Metal-organic frameworks for electrocatalysis: Beyond their derivatives. Small Sci. 2021, 2100015.

  9. Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983–11060.

    Article  CAS  Google Scholar 

  10. Hai, G. T.; Jia, X. L.; Zhang, K. Y.; Liu, X.; Wu, Z. Y.; Wang, G. High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy 2018, 44, 345–352.

    Article  CAS  Google Scholar 

  11. Zhou, L.; Zhuang, Z. C.; Zhao, H. H.; Lin, M. T.; Zhao, D. Y.; Mai, L. Q. Intricate hollow structures:Controlled synthesis and applications in energy storage and conversion. Adv. Mater. 2017, 29, 1602914.

    Article  Google Scholar 

  12. Liu, D.; Wan, J. W.; Pang, G. S.; Tang, Z. Y. Hollow metal-organic-framework micro/nanostructures and their derivatives: Emerging multifunctional materials. Adv. Mater. 2019, 31, 1803291.

    Article  Google Scholar 

  13. Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 126, 12725–12729.

    Article  Google Scholar 

  14. Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 5512–5516.

    Article  CAS  Google Scholar 

  15. Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

    Article  CAS  Google Scholar 

  16. Li, Y. Z.; Fu, Z. H.; Xu, G. Metal-organic framework nanosheets: Preparation and applications. Coord. Chem. Rev. 2019, 388, 79–106.

    Article  CAS  Google Scholar 

  17. Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

    Article  CAS  Google Scholar 

  18. Fang, W. S.; Huang, L.; Zaman, S.; Wang, Z. T.; Han, Y. J.; Xia, B. Y. Recent progress on two-dimensional electrocatalysis. Chem. Res. Chin. Univ. 2020, 36, 611–621.

    Article  CAS  Google Scholar 

  19. Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

    Article  Google Scholar 

  20. Raja, D. S.; Chuah, X. F.; Lu, S. Y. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065.

    Article  Google Scholar 

  21. Mesbah, A.; Rabu, P.; Sibille, R.; Lebegue, S.; Mazet, T.; Malaman, B.; Francois, M. From hydrated Ni3(OH)2(C8H4O4)2(H2O)4 to anhydrous Ni2(OH)2(C8H4O4): Impact of structural transformations on magnetic properties. Inorg. Chem. 2014, 53, 872–881.

    Article  CAS  Google Scholar 

  22. Carton, A.; Mesbah, A.; Mazet, T.; Porcher, F.; François, M. Ab initio crystal structure of nickel(II) hydroxy-terephthalate by synchrotron powder diffraction and magnetic study. Solid State Sci. 2007, 9, 465–471.

    Article  CAS  Google Scholar 

  23. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 44, 8553–8557.

    Article  Google Scholar 

  24. Bordiga, S.; Lamberti, C.; Ricchiardi, G.; Regli, L.; Bonino, F.; Damin, A.; Lillerud, K. P.; Bjorgen, M.; Zecchina, A. Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. 2004, 2300–2301.

  25. Yu, L.; Wu, H. B.; Lou, X. W. Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 2017, 50, 293–301.

    Article  CAS  Google Scholar 

  26. Ma, F. X.; Hu, H.; Wu, H. B.; Xu, C. Y.; Xu, Z. C.; Zhen, L.; Lou, X. W. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 2015, 27, 4097–4101.

    Article  CAS  Google Scholar 

  27. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    Article  CAS  Google Scholar 

  28. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  Google Scholar 

  29. Dionigi, F.; Strasser, P. NiFe-based (oxy) hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 2016, 6, 1600621.

    Article  Google Scholar 

  30. Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.

    Article  Google Scholar 

  31. Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

    Article  CAS  Google Scholar 

  32. Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts. ACS Energy Lett. 2017, 2, 1937–1938.

    Article  CAS  Google Scholar 

  33. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Article  CAS  Google Scholar 

  34. Tareen, A. K.; Priyanga, G. S.; Khan, K.; Pervaiz, E.; Thomas, T.; Yang, M. H. Nickel-based transition metal nitride electrocatalysts for the oxygen evolution reaction. ChemSusChem 2019, 12, 3941–3954.

    Article  CAS  Google Scholar 

  35. Liu, M.; Kong, L. J.; Wang, X. M.; He, J.; Bu, X. H. Engineering bimetal synergistic electrocatalysts based on metal-organic frameworks for efficient oxygen evolution. Small 2019, 15, 1903410.

    Article  CAS  Google Scholar 

  36. Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2003916.

    Article  CAS  Google Scholar 

  37. Gong, L. Q.; Yang, H.; Wang, H. M.; Qi, R. J.; Wang, J. L.; Chen, S. H.; You, B.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021.

  38. Yang, H.; Gong, L. Q.; Wang, H. M.; Dong, C. L.; Wang, J. L.; Qi, K.; Liu, H. F.; Guo, X. P.; Xia, B. Y. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 2020, 11, 5075.

    Article  CAS  Google Scholar 

  39. Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.

    Article  CAS  Google Scholar 

  40. Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.

    Article  Google Scholar 

  41. Wang, B. Q.; Shang, J.; Guo, C.; Zhang, J. Z.; Zhu, F. N.; Han, A. J.; Liu, J. F. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays. Small 2019, 15, 1804761.

    Article  Google Scholar 

  42. Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 7051–7056.

    Article  CAS  Google Scholar 

  43. Qian, Q. Z.; Li, Y. P.; Liu, Y.; Yu, L.; Zhang, G. Q. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139.

    Article  Google Scholar 

  44. Wang, Y.; Liu, B. R.; Shen, X. J.; Arandiyan, H.; Zhao, T. W.; Li, Y. B.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A. et al. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2003759.

    Article  CAS  Google Scholar 

  45. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  CAS  Google Scholar 

  46. Zhang, F.; Shi, Y. M.; Xue, T.; Zhang, J. F.; Liang, Y.; Zhang, B. In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: A highly efficient electrocatalyst towards water oxidation. Sci. China Mater. 2017, 60, 324–334.

    Article  CAS  Google Scholar 

  47. Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 2019, 12, 572–581.

    Article  CAS  Google Scholar 

  48. Thangavel, P.; Ha, M. R.; Kumaraguru, S.; Meena, A.; Singh, A. N.; Harzandi, A. M.; Kim, K. S. Graphene-nanoplatelets-supported NiFe-MOF: High-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ. Sci. 2020, 13, 3447–3458.

    Article  CAS  Google Scholar 

  49. Cai, W. Z.; Chen, R.; Yang, H. B.; Tao, H. B.; Wang, H. Y.; Gao, J. J.; Liu, W.; Liu, S.; Hung, S. F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy. Nano Lett. 2020, 20, 4278–4285.

    Article  CAS  Google Scholar 

  50. Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

    Article  CAS  Google Scholar 

  51. Liu, X.; Meng, J. S.; Zhu, J. X.; Huang, M.; Wen, B.; Guo, R. T.; Mai, L. Q. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 2021, 33, 2007344.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project (No. HZQB-KCZYB-2020030), the National Key R&D Program of China (Project No. 2017YFA0204403), Innovation and Technology Commission of HKSAR through Hong Kong Branch of National Precious Metals Material Engineering Research Centre and Shenzhen Science and Technology Innovation Committee (No. JCYJ20200109113212238).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Lu or Yang Yang Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, FX., Lyu, F., Diao, Y. et al. Self-templated formation of twin-like metal-organic framework nanobricks as pre-catalysts for efficient water oxidation. Nano Res. 15, 2887–2894 (2022). https://doi.org/10.1007/s12274-021-3885-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3885-y

Keywords

Navigation