Skip to main content
Log in

High-yield and low-cost separation of high-purity semiconducting single-walled carbon nanotubes with closed-loop recycling of raw materials and solvents

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Semiconducting single-walled carbon nanotubes (s-SWCNTs) are the foundation of CNT-based electronics and optoelectronics. For practical applications, s-SWCNTs should be produced with high purity, high structural quality, low cost, and high yield. Currently conjugated polymer wrapping method shows great potential to fulfill these requirements due to its advantages of simple operation process, high purity separation, and easy scaling-up. However, only a small portion of both CNTs and polymers go into the final solution, and most of them are discarded after a single use, resulting in high cost and low yield. In this paper, we introduce a closed-loop recycling strategy, in which raw materials (CNTs and polymers) and solvents were all recycled and reused for multiple separation cycles. In each cycle, high-purity (> 99.9%) s-SWCNTs were obtained with no significant change of structural quality. After 7 times of recycling and separation, the material cost was reduced to ∼ 1% in comparison with commercially available products, and total yield was increased to 36% in comparison with 2%–5% for single cycle separation. Our proposed closed-loop recycling strategy paves the way for low-cost and high-yield mass production of high-quality s-SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

    Book  Google Scholar 

  2. International Technology Roadmap for Semiconductors [Online]. https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/

  3. Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.

    Article  CAS  Google Scholar 

  4. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  CAS  Google Scholar 

  5. Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

    Article  CAS  Google Scholar 

  6. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.

    Article  CAS  Google Scholar 

  7. Khripin, C. Y.; Fagan, J. A.; Zheng, M. Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. J. Am. Chem. Soc. 2013, 135, 6822–6825.

    Article  CAS  Google Scholar 

  8. Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.

    Article  CAS  Google Scholar 

  9. Qiu, S.; Wu, K. J.; Gao, B.; Li, L. Q.; Jin, H. H.; Li, Q. W. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 2019, 31, 1800750.

    Article  CAS  Google Scholar 

  10. Wang, H. L.; Bao, Z. N. Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 2015, 10, 737–758.

    Article  CAS  Google Scholar 

  11. Fong, D.; Adronov, A. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chem. Sci. 2017, 8, 7292–7305.

    Article  CAS  Google Scholar 

  12. Lei, T.; Pochorovski, I.; Bao, Z. N. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc. Chem. Res. 2017, 50, 1096–1104.

    Article  CAS  Google Scholar 

  13. Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.

    Article  CAS  Google Scholar 

  14. Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H. L.; Morishita, S.; Patil, N.; Park, Y. J. et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541.

    Article  CAS  Google Scholar 

  15. Ding, J. F.; Li, Z.; Lefebvre, J.; Cheng, F. Y.; Dubey, G.; Zou, S.; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G. P. et al. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 2014, 6, 2328–2339.

    Article  CAS  Google Scholar 

  16. Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 2013, 7, 2231–2239.

    Article  CAS  Google Scholar 

  17. Brady, G. J.; Joo, Y.; Wu, M. Y.; Shea, M. J.; Gopalan, P.; Arnold, M. S. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 2014, 8, 11614–11621.

    Article  CAS  Google Scholar 

  18. http://www.carbonsolution.com/.

  19. http://nanointegris.com/.

  20. http://www.derthon.com/.

  21. https://www.jkchemical.com.

  22. Graf, A.; Zakharko, Y.; Schießl, S. P.; Backes, C.; Pfohl, M.; Flavel, B. S.; Zaumseil, J. Large scale, selective dispersion of long singlewalled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 2016, 105, 593–599.

    Article  CAS  Google Scholar 

  23. Yu, X. Q.; Liu, D.; Kang, L. X.; Yang, Y.; Zhang, X. P.; Lv, Q. J.; Qiu, S.; Jin, H. H.; Song, Q. J.; Zhang, J. et al. Recycling strategy for fabricating low-cost and high-performance carbon nanotube TFT devices. ACS Appl. Mater. Interfaces 2017, 9, 15719–15726.

    Article  CAS  Google Scholar 

  24. Gao, T. Z.; Lei, T.; Molina-Lopez, F.; Bao, Z. N. Enhanced process integration and device performance of carbon nanotubes via flocculation. Small Methods 2018, 2, 1800189.

    Article  CAS  Google Scholar 

  25. Lei, T.; Chen, X. Y.; Pitner, G.; Wong, H. S. P.; Bao, Z. N. Removable and recyclable conjugated polymers for highly selective and high-yield dispersion and release of low-cost carbon nanotubes. J. Am. Chem. Soc. 2016, 138, 802–805.

    Article  CAS  Google Scholar 

  26. Gu, J. T.; Han, J.; Liu, D.; Yu, X. Q.; Kang, L. X.; Qiu, S.; Jin, H. H.; Li, H. B.; Li, Q. W.; Zhang, J. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of highperformance thin-film transistors. Small 2016, 12, 4993–4999.

    Article  CAS  Google Scholar 

  27. Dong, G. D.; Zhao, J.; Shen, L. J.; Xia, J. Y.; Meng, H.; Yu, W. H.; Huang, Q.; Han, H.; Liang, X. L.; Peng, L. M. Large-area and highly uniform carbon nanotube film for high-performance thin film transistors. Nano Res. 2018, 11, 4356–4367.

    Article  CAS  Google Scholar 

  28. Zhao, J.; Shen, L. J.; Liu, F.; Zhao, P.; Huang, Q.; Han, H.; Peng, L. M.; Liang, X. L. Quality metrology of carbon nanotube thin films and its application for carbon nanotube-based electronics. Nano Res. 2020, 13, 1749–1755.

    Article  CAS  Google Scholar 

  29. User’s guide of cole parmer 750 watt ultrasonicator.

  30. Barman, S. N.; LeMieux, M. C.; Baek, J.; Rivera, R.; Bao, Z. N. Effects of dispersion conditions of single-walled carbon nanotubes on the electrical characteristics of thin film network transistors. ACS Appl. Mater. Interfaces 2010, 2, 2672–2678.

    Article  CAS  Google Scholar 

  31. O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.

    Article  Google Scholar 

  32. Tian, Y.; Jiang, H.; Laiho, P.; Kauppinen, E. I. Validity of measuring metallic and semiconducting single-walled carbon nanotube fractions by quantitative Raman spectroscopy. Anal. Chem. 2018, 90, 2517–2525.

    Article  CAS  Google Scholar 

  33. Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A. G.; Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002, 40, 2043–2061.

    Article  CAS  Google Scholar 

  34. Alam, M. A.; Pimparkar, N.; Kumar, S.; Murthy, J. Theory of nano-composite network transistors for macroelectronics applications. MRS Bull. 2006, 31, 466–470.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (No. 2016YFA0201902), the National Natural Science Foundation of China (No. 51991341), Young Talents Program of Beijing (No. 2018000020028G349), and the Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of Sciences (No. LSU-KFJJ-2020-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Cao or Xuelei Liang.

Electronic Supplementary Material

12274_2021_3671_MOESM1_ESM.pdf

High-yield and low-cost separation of high-purity semiconducting single-walled carbon nanotubes with closed-loop recycling of raw materials and solvents

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Chen, X., Liu, H. et al. High-yield and low-cost separation of high-purity semiconducting single-walled carbon nanotubes with closed-loop recycling of raw materials and solvents. Nano Res. 14, 4281–4287 (2021). https://doi.org/10.1007/s12274-021-3671-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3671-x

Keywords

Navigation