Skip to main content
Log in

Ultra-broadband spatial light modulation with dual-resonance coupled epsilon-near-zero materials

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It has been found that the dielectric constants of transparent conductive oxides (TCOs) can be adjusted in an extremely large range by tuning the carrier density. Due to the remarkable light confinement property of the epsilon-near-zero (ENZ) effect of TCOs, it has attracted extensive interests of light modulation. However, the operation wavelength bandwidth is usually limited by optical resonance that is applied to enhance the light-TCOs interaction. In this work, a dual-resonance light coupling scheme is proposed to expand the modulation depth-bandwidth product with almost one order-of-magnitude improvement. In a metallic subwavelength grating structure with deep trenches backed by a ground plane, the ENZ mode can be coupled to both magnetic resonance and Fabry-Perot resonance respectively by tuning the bias. Decent light modulation can be obtained in a large operation wavelength band covering two resonances by optimizing the dual-resonance configuration. Such a reconfigurable efficient broadband modulation is important for robust communication link and possesses remarkable capacity for wavelength division multiplexing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reed, G. T.; Mashanovich, G.; Gardes, F. Y.; Thomson, D. J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526.

    Article  CAS  Google Scholar 

  2. Efron, U. Spatial Light Modulator Technology: Materials, Devices, and Applications; CRC Press: Boca Raton, 1994.

    Google Scholar 

  3. He, M. B.; Xu, M. Y.; Ren, Y. X.; Jian, J.; Ruan, Z. L.; Xu, Y. S.; Gao, S. Q.; Sun, S. H.; Wen, X. Q.; Zhou, L. D. et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s−1 and beyond. Nat. Photonics 2019, 13, 359–364.

    Article  CAS  Google Scholar 

  4. Alloatti, L.; Palmer, R.; Diebold, S.; Pahl, K. P.; Chen, B. Q.; Dinu, R.; Fournier, M.; Fedeli, J. M.; Zwick, T.; Freude, W. et al. 100 GHz silicon-organic hybrid modulator. Light: Sci. Appl. 2014, 3, e173.

    Article  CAS  Google Scholar 

  5. Bleha, W. P. Jr.; Lei, L. A. Advances in liquid crystal on silicon (LCOS) spatial light modulator technology. In Proceedings of SPIE 8736, Display Technologies and Applications for Defense, Security, and Avionics VII, Baltimore, Maryland, United States, 2013, pp 87360A.

  6. Liu, M. K.; Hwang, H. Y.; Tao, H.; Strikwerda, A. C.; Fan, K.; Keiser, G. R.; Sternbach, A. J.; West, K. G.; Kittiwatanakul, S.; Lu, J. W. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012, 487, 345–348.

    Article  CAS  Google Scholar 

  7. Solgaard, O.; Sandejas, F. S. A.; Bloom, D. M. Deformable grating optical modulator. Opt. Lett. 1992, 17, 688–690.

    Article  CAS  Google Scholar 

  8. Grinenko, A.; MacDonald, M. P.; Courtney, C. R. P.; Wilcox, P. D.; Demore, C. E. M.; Cochran, S.; Drinkwater, B. W. Tunable beam shaping with a phased array acousto-optic modulator. Opt. Express 2015, 23, 26–32.

    Article  CAS  Google Scholar 

  9. Arad, U.; Redmard, E.; Shamay, M.; Averboukh, A.; Levit, S.; Efron, U. Development of a large high-performance 2-D array of GaAs-AlGaAs multiple quantum-well modulators. IEEE Photonics Technol. Lett. 2003, 15, 1531–1533.

    Article  Google Scholar 

  10. Qiu, C. Y.; Chen, J. B.; Xia, Y.; Xu, Q. F. Active dielectric antenna on chip for spatial light modulation. Sci. Rep. 2012, 2, 855.

    Article  CAS  Google Scholar 

  11. Olivieri, A.; Chen, C. K.; Hassan, S. A.; Lisicka-Skrzek, E.; Tait, R. N.; Berini, P. Plasmonic nanostructured metal-oxide-semiconductor reflection modulators. Nano Lett. 2015, 15, 2304–2311.

    Article  CAS  Google Scholar 

  12. Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.

    Article  CAS  Google Scholar 

  13. Feigenbaum, E.; Diest, K.; Atwater, H. A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 2010, 10, 2111–2116.

    Article  CAS  Google Scholar 

  14. Sorger, V. J.; Lanzillotti-Kimura, N. D.; Ma, R. M.; Zhang, X. Ultracompact silicon nanophotonic modulator with broadband response. Nanophotonics 2012, 1, 17–22.

    Article  CAS  Google Scholar 

  15. Hu, X.; Chen, Q.; Wen, L.; Jin, L.; Wang, H. C.; Liu, W. W. Modulating spatial light by grating slot waveguides with transparent conducting oxides. IEEE Photonics Technol. Lett. 2016, 28, 1665–1668.

    Article  CAS  Google Scholar 

  16. Lu, Z. L.; Zhao, W. S.; Shi, K. F. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photonics J. 2012, 4, 735–740.

    Article  Google Scholar 

  17. Park, J.; Kang, J. H.; Liu, X. G.; Brongersma, M. L. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Sci. Rep. 2015, 5, 15754.

    Article  CAS  Google Scholar 

  18. Kinsey, N.; DeVault, C.; Kim, J.; Ferrera, M.; Shalaev, V. M.; Boltasseva, A. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica 2015, 2, 616–622.

    Article  CAS  Google Scholar 

  19. Yang, Y. M.; Lu, J.; Manjavacas, A.; Luk, T. S.; Liu, H. Z.; Kelley, K.; Maria, J. P.; Runnerstrom, E. L.; Sinclair, M. B.; Ghimire, S. et al. High-harmonic generation from an epsilon-near-zero material. Nat. Phys. 2019, 15, 1022–1026.

    Article  CAS  Google Scholar 

  20. Zhao, H. W.; Zhang, R.; Chorsi, H. T.; Britton, W. A.; Chen, Y. Y.; Iyer, P. P.; Schuller, J. A.; Negro, L. D.; Klamkin, J. Gate-tunable metafilm absorber based on indium silicon oxide. Nanophotonics 2019, 8, 1803–1810.

    Article  CAS  Google Scholar 

  21. Jun, Y. C.; Reno, J.; Ribaudo, T.; Shaner, E.; Greffet, J. J.; Vassant, S.; Marquier, F.; Sinclair, M.; Brener, I. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. Nano Lett. 2013, 13, 5391–5396.

    Article  CAS  Google Scholar 

  22. Babicheva, V. E.; Boltasseva, A.; Lavrinenko, A. V. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 2015, 4, 165–185.

    Article  CAS  Google Scholar 

  23. Jin, L.; Chen, Q.; Liu, W. W.; Song, S. C. Electro-absorption modulator with dual carrier accumulation layers based on epsilon-near-zero ITO. Plasmonics 2016, 11, 1087–1092.

    Article  CAS  Google Scholar 

  24. Lee, H. W.; Papadakis, G.; Burgos, S. P.; Chander, K.; Kriesch, A.; Pala, R.; Peschel, U.; Atwater, H. A. Nanoscale conducting oxide PlasMOStor. Nano Lett. 2014, 14, 6463–6468.

    Article  CAS  Google Scholar 

  25. Li, E. W.; Gao, Q.; Chen, R. T.; Wang, A. X. Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume. Nano Lett. 2018, 18, 1075–1081.

    Article  CAS  Google Scholar 

  26. Guizzardi, M.; Bonfadini, S.; Moscardi, L.; Kriegel, I.; Scotognella, F.; Criante, L. Large scale indium tin oxide (ITO) one dimensional gratings for ultrafast signal modulation in the visible spectral region. Phys. Chem. Chem. Phys. 2020, 22, 6881–6887.

    Article  CAS  Google Scholar 

  27. Amin, R.; George, J. K.; Sun, S.; Ferreira de Lima, T.; Tait, A. N.; Khurgin, J. B.; Miscuglio, M.; Shastri, B. J.; Prucnal, P. R.; El-Ghazawi, T. et al. ITO-based electro-absorption modulator for photonic neural activation function. APL Mater. 2019, 7, 081112.

    Article  CAS  Google Scholar 

  28. Amin, R.; Maiti, R.; Cui, Y. L.; Suer, C.; Miscuglio, M.; Heidari, E.; Chen, R. T.; Dalir, H.; Sorger, V. J. Sub-wavelength GHz-fast broadband ITO Mach-Zehnder modulator on silicon photonics. Optica 2020, 7, 333–335.

    Article  CAS  Google Scholar 

  29. Liu, K.; Ye, C. R.; Khan, S.; Sorger, V. J. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev. 2015, 9, 172–194.

    Article  Google Scholar 

  30. Xu, Q. F.; Schmidt, B.; Pradhan, S.; Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 2005, 435, 325–327.

    Article  CAS  Google Scholar 

  31. Ayata, M.; Fedoryshyn, Y.; Heni, W.; Baeuerle, B.; Josten, A.; Zahner, M.; Koch, U.; Salamin, Y.; Hoessbacher, C.; Haffner, C. et al. High-speed plasmonic modulator in a single metal layer. Science 2017, 358, 630–632.

    Article  CAS  Google Scholar 

  32. Abb, M.; Albella, P.; Aizpurua, J.; Muskens, O. L. All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Lett. 2011, 11, 2457–2463.

    Article  CAS  Google Scholar 

  33. Anglin, K.; Ribaudo, T.; Adams, D. C.; Qian, X.; Goodhue, W. D.; Dooley, S.; Shaner, E. A.; Wasserman, D. Voltage-controlled active mid-infrared plasmonic devices. J. Appl. Phys. 2011, 109, 123103.

    Article  CAS  Google Scholar 

  34. Sensale-Rodriguez, B.; Yan, R. S.; Rafique, S.; Zhu, M. D.; Li, W.; Liang, X. L.; Gundlach, D.; Protasenko, V.; Kelly, M. M.; Jena, D. et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett. 2012, 12, 4518–4522.

    Article  CAS  Google Scholar 

  35. Gan, X. T.; Shiue, R. J.; Gao, Y. D.; Mak, K. F.; Yao, X. W.; Li, L. Z.; Szep, A.; Walker, D. Jr.; Hone, J.; Heinz, T. F. et al. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett. 2013, 13, 691–696.

    Article  CAS  Google Scholar 

  36. Zhang, Y. X.; Qiao, S.; Liang, S. X.; Wu, Z. H.; Yang, Z. Q.; Feng, Z. H.; Sun, H.; Zhou, Y. C.; Sun, L. L.; Chen, Z. et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett. 2015, 15, 3501–3506.

    Article  CAS  Google Scholar 

  37. Wang, Q.; Junique, S.; Ågren, D.; Almqvist, S.; Noharet, B. Arrays of vertical-cavity electroabsorption modulators for parallel signal processing. Opt. Express 2005, 13, 3323–3330.

    Article  Google Scholar 

  38. Huang, Y. Y.; Liu, H. C.; Wasilewski, Z. R.; Buchanan, M.; Laframboise, S. R.; Yang, C.; Cui, G. X.; Bian, L. F.; Yang, H.; Zhang, Y. H. High contrast ratio, high uniformity multiple quantum well spatial light modulators. J. Semiconductors 2010, 31, 034007.

    Article  CAS  Google Scholar 

  39. Polman, A.; Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 2012, 11, 174–177.

    Article  CAS  Google Scholar 

  40. Wen, L.; Sun, F. H.; Chen, Q. Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells. Appl. Phys. Lett. 2014, 104, 151106.

    Article  CAS  Google Scholar 

  41. Song, S. C.; Chen, Q.; Jin, L.; Sun, F. H. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale 2013, 5, 9615–9619.

    Article  CAS  Google Scholar 

  42. Wen, L.; Chen, Y. F.; Liu, W. W.; Su, Q.; Grant, J.; Qi, Z. Y.; Wang, Q. L.; Chen, Q. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-schottky junction. Laser Photonics Rev. 2017, 11, 1700059.

    Article  CAS  Google Scholar 

  43. Akahane, Y.; Asano, T.; Takano, H.; Song, B. S.; Takana, Y.; Noda, S. Two-dimensional photonic-crystal-slab channel-drop filter with flat-top response. Opt. Express 2005, 13, 2512–2530.

    Article  Google Scholar 

  44. Kawanishi, K.; Shimatani, A.; Lee, K. J.; Inoue, J.; Ura, S.; Magnusson, R. Cross-stacking of guided-mode resonance gratings for polarization-independent flat-top filtering. Opt. Lett. 2020, 45, 312–314.

    Article  CAS  Google Scholar 

  45. Cui, H. N.; Teixeira, V.; Meng, L. J.; Martins, R.; Fortunato, E. Influence of oxygen/argon pressure ratio on the morphology, optical and electrical properties of ITO thin films deposited at room temperature. Vacuum 2008, 82, 1507–1511.

    Article  CAS  Google Scholar 

  46. Chen, Q.; Song, S. C. Spatial light modulator based on metamaterial structure and preparation method thereof. U.S. Patent 9,547,185, Jan. 17, 2017.

  47. Huang, Y. W.; Lee, H. W. H.; Sokhoyan, R.; Pala, R. A.; Thyagarajan, K.; Han, S.; Tsai, D. P.; Atwater, H. A. Gate-tunable conducting oxide metasurfaces. Nano Lett. 2016, 16, 5319–5325.

    Article  CAS  Google Scholar 

  48. Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.

    Article  CAS  Google Scholar 

  49. Hu, X.; Xu, G. Q.; Wen, L.; Wang, H. C.; Zhao, Y. C.; Zhang, Y. X.; Cumming, D. R. S.; Chen, Q. Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev. 2016, 10, 962–969.

    Article  CAS  Google Scholar 

  50. Morea, M.; Zang, K.; Kamins, T. I.; Brongersma, M. L.; Harris, J. S. Electrically tunable, CMOS-compatible metamaterial based on semiconductor nanopillars. ACS Photonics 2018, 5, 4702–4709.

    Article  CAS  Google Scholar 

  51. Liu, X. G.; Kang, J. H.; Yuan, H. T.; Park, J.; Kim, S. J.; Cui, Y.; Hwang, H. Y.; Brongersma, M. L. Electrical tuning of a quantum plasmonic resonance. Nat. Nanotechnol. 2017, 12, 866–870.

    Article  CAS  Google Scholar 

  52. Howes, A.; Wang, W. Y.; Kravchenko, I.; Valentine, J. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 2018, 5, 787–792.

    Article  CAS  Google Scholar 

  53. Shcherbakov, M. R.; Liu, S.; Zubyuk, V. V.; Vaskin, A.; Vabishchevich, P. P.; Keeler, G.; Pertsch, T.; Dolgova, T. V.; Staude, I.; Brener, I. et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun. 2017, 8, 17.

    Article  CAS  Google Scholar 

  54. Lee, E.; Seo, I. C.; Lim, S. C.; Jeong, H. Y.; Jun, Y. C. Active switching and tuning of sharp Fano resonances in the mid-infrared spectral region. Opt. Express 2016, 24, 25684–25696.

    Article  CAS  Google Scholar 

  55. Gao, Q.; Li, E. W.; Wang, A. X. Comparative analysis of transparent conductive oxide electro-absorption modulators [Invited]. Opt. Mater. Express 2018, 8, 2850–2862.

    Article  CAS  Google Scholar 

  56. Judd, J. Fabrication and characterization of high-k Al2O3 and HfO2 capacitors. J. Microelectron. Eng. Conf. 2018, 24, 28.

    Google Scholar 

Download references

Acknowledgements

We are grateful for financial supports from the National Key Research and Development Program of China (No. 2019YFB2203402), the National Natural Science Foundation of China (Nos. 92050108, 11774383, 11774099 and 11874029), Guangdong Science and Technology Program International Cooperation Program (No. 2018A050506039), Guangdong Basic and Applied Basic Research Foundation (No. 2020B1515020037), and Pearl River Talent Plan Program of Guangdong (No. 2019QN01X120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Chen or Long Wen.

Additional information

Conflict of interests

The authors declare no conflict of interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Song, S., Wang, H. et al. Ultra-broadband spatial light modulation with dual-resonance coupled epsilon-near-zero materials. Nano Res. 14, 2673–2680 (2021). https://doi.org/10.1007/s12274-020-3271-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3271-1

Keywords

Navigation