Skip to main content
Log in

The coupling effect characterization for van der Waals structures based on transition metal dichalcogenides

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

van der Waals (vdW) heterostructures based on two-dimensional (2D) materials holding design-by-demand features offer astonishing opportunities to construct novel electronics and optoelectronics devices due to the vdW force interaction between their stacked components. At the atomically thin confinement, vdW heterostructure not only exhibits unprecedented properties as an entire counterpart, but also provides unique platforms to manipulate the vdW interfacial behaviors. Therefore, developing characterization techniques to comprehensively understand the coupling effect on structure-property-performance relationship of vdW heterostructures is crucial for fundamental science and practical applications. Here, we focus on the most widely studied 2D semiconductor transition metal dichalcogenides (TMDCs) and systematically review significant advances in characterizing the material and interfacial coupling effect of the related vdW heterostructures. Specially, we will discuss microscopy techniques for unveiling the structure-property relationship of vdW heterostructures and optical spectroscopy measurements for analyzing vdW interfacial coupling effect. Finally, we address some promising strategies to optimize characterization technologies for resolving vdW heterostructures, including coupling multiple characterization technologies, improving temporal and spatial resolution, developing fast, efficient, and non-destructive techniques and introducing artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Wang, L.; Xu, X. Z.; Zhang, L. N.; Qiao, R. X.; Wu, M. H.; Wang, Z. C.; Zhang, S.; Liang, J.; Zhang, Z. H.; Zhang, Z. B. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91–95.

    CAS  Google Scholar 

  3. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  4. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    CAS  Google Scholar 

  5. Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.

    CAS  Google Scholar 

  6. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    CAS  Google Scholar 

  7. Kahn, E.; Liu, M. Z.; Zhang, T. Y.; Liu, H.; Fujisawa, K.; Bepete, G.; Ajayan, P. M.; Terrones, M. Functional hetero-interfaces in atomically thin materials. Mater. Today 2020, 37, 74–92.

    CAS  Google Scholar 

  8. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    CAS  Google Scholar 

  9. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    CAS  Google Scholar 

  10. Liu, Y.; Huang, Y.; Duan, X. F. van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

    CAS  Google Scholar 

  11. The interface is still the device. Nat. Mater. 2012, 11, 91.

  12. Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602.

    CAS  Google Scholar 

  13. Hunt, B.; Sanchez-Yamagishi, J.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430.

    CAS  Google Scholar 

  14. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    CAS  Google Scholar 

  15. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    CAS  Google Scholar 

  16. Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222.

    CAS  Google Scholar 

  17. Wu, F.; Li, Q.; Wang, P.; Xia, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F. S.; Miao, J. S. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.

    Google Scholar 

  18. Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide midwave infrared photodiodes with high detectivity at room temperature. Nat. Photonics. 2018, 12, 601–607.

    CAS  Google Scholar 

  19. Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404–410.

    CAS  Google Scholar 

  20. Liu, X. L.; Hersam, M. C. Interface characterization and control of 2D materials and heterostructures. Adv. Mater. 2018, 30, 1801586.

    Google Scholar 

  21. Cattelan, M.; Fox, N. A. A perspective on the application of spatially resolved ARPES for 2D materials. Nanomaterials 2018, 8, 284.

    Google Scholar 

  22. Dal Conte, S.; Trovatello, C.; Gadermaier, C.; Cerullo, G. Ultrafast photophysics of 2D semiconductors and related heterostructures. Trends Chem. 2020, 2, 28–42.

    CAS  Google Scholar 

  23. Ajayan, P.; Kim, P.; Banerjee, K. Two-dimensional van der Waals materials. Phys. Today 2016, 69, 38–44.

    CAS  Google Scholar 

  24. Liu, S.; Liao, Q. L.; Zhang, Z.; Zhang, X. K.; Lu, S. N.; Zhou, L. X.; Hong, M. Y.; Kang, Z.; Zhang, Y. Strain modulation on graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor. Nano Res. 2017, 10, 3476–3485.

    CAS  Google Scholar 

  25. Bullock, J.; Amani, M.; Cho, J.; Chen. Y.-Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y.-L. et al. Polarization-resolved black phosphorus/molybdenum disulfide midwave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

    CAS  Google Scholar 

  26. Wu, H. L.; Kang, Z.; Zhang, Z. H.; Si, H. N.; Zhang, S. C.; Zhang, Z.; Liao, Q. L.; Zhang, Y. Ligand engineering for improved all-inorganic perovskite quantum dot-MoS2 monolayer mixed dimensional van der Waals phototransistor. Small Methods 2019, 3, 1900117.

    Google Scholar 

  27. Lin, P.; Yang, J. K. Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics. J. Alloys Compd. 2020, 842, 155890.

    CAS  Google Scholar 

  28. Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Wang, K.; Mahjouri-Samani, M.; Basile, L.; Idrobo, J. C.; Sumpter, B. G.; Meunier, V. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 2015, 9, 6333–6342.

    CAS  Google Scholar 

  29. Lu, X.; Utama, M. I. B.; Lin, J. H.; Luo, X.; Zhao, Y. Y.; Zhang, J.; Pantelides, S. T.; Zhou, W.; Quek, S. Y.; Xiong, Q. H. Rapid and nondestructive identification of polytypism and stacking sequences in few-layer molybdenum diselenide by Raman spectroscopy. Adv. Mater. 2015, 27, 4502–4508.

    CAS  Google Scholar 

  30. Yan, J. X.; Xia, J.; Wang, X. L.; Liu, L.; Kuo, J. L.; Tay, B. K.; Chen, S. S.; Zhou, W.; Liu, Z.; Shen, Z. X. Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett. 2015, 15, 8155–8161.

    CAS  Google Scholar 

  31. Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. A.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

    CAS  Google Scholar 

  32. Xia, J.; Yan, J. X.; Shen, Z. X. Transition metal dichalcogenides: Structural, optical and electronic property tuning via thickness and stacking. FlatChem 2017, 4, 1–19.

    CAS  Google Scholar 

  33. Guo, H. L.; Zhang, X.; Lu, G. Shedding light on moiré excitons: A first-principles perspective. Sci. Adv. 2020, 6, eabc5638.

    CAS  Google Scholar 

  34. Jin, C. H.; Regan, E. C.; Yan, A. M.; Utama, M. I. B.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

    CAS  Google Scholar 

  35. Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

    CAS  Google Scholar 

  36. Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moirétrapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

    CAS  Google Scholar 

  37. Jin, C. H.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994–1003.

    CAS  Google Scholar 

  38. Fan, S. D.; Yun, S. J.; Yu, W. J.; Lee, Y. H. Tailoring quantum tunneling in a vanadium-doped WSe2/SnSe2 heterostructure. Adv. Sci. 2020, 7, 1902751.

  39. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

    CAS  Google Scholar 

  40. Cheng, R. Q.; Wang, F.; Yin, L.; Wang Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018, 1, 356–361.

    CAS  Google Scholar 

  41. Linghu, J. J.; Yang, T.; Luo, Y. Z.; Yang, M.; Zhou, J.; Shen, L.; Feng, Y. P. High-throughput computational screening of vertical 2D van der Waals heterostructures for high-efficiency excitonic solar cells. ACS Appl. Mater. Interfaces 2018, 10, 32142–32150.

    CAS  Google Scholar 

  42. Özçelik, V. O.; Azadani, J. G.; Yang, C.; Koester, S. J.; Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 2016, 94, 035125.

    Google Scholar 

  43. Ionescu, A. M.; Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 2011, 479, 329–337.

    CAS  Google Scholar 

  44. Zhang, C. X.; Gong, C.; Nie, Y. F.; Min, K. A.; Liang, C. P.; Oh, Y. J.; Zhang, H. J.; Wang, W. H.; Hong, S.; Colombo, L. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Mater. 2016, 4, 015026.

    Google Scholar 

  45. Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037–3058.

    CAS  Google Scholar 

  46. Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.

    CAS  Google Scholar 

  47. Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; Pérez De Lara, D.; Jarillo-Herrero, P.; Gorbachev, R. V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68.

    CAS  Google Scholar 

  48. Zhang, Z.; Lin, P.; Liao, Q. L.; Kang, Z.; Si, H. N.; Zhang, Y. Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv. Mater. 2019, 31, 1806411.

    Google Scholar 

  49. Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.

    CAS  Google Scholar 

  50. Wu, H. L.; Si, H. N.; Zhang, Z. H.; Kang, Z.; Wu, P. W.; Zhou, L. X.; Zhang, S. C.; Zhang, Z.; Liao, Q. L.; Zhang, Y. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 2018, 5, 1801219.

    Google Scholar 

  51. Jiang, Y.; Chen, Z.; Han, Y. M.; Deb, P.; Gao, H.; Xie, S. E.; Purohit, P.; Tate, M. W.; Park, J.; Gruner, S. M. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018, 559, 343–349.

    CAS  Google Scholar 

  52. Han, Y. M.; Nguyen, K.; Cao, M.; Cueva, P.; Xie, S. E.; Tate, M. W.; Purohit, P.; Gruner, S. M.; Park, J.; Muller, D. A. Strain mapping of two-dimensional heterostructures with subpicometer precision. Nano Lett. 2018, 18, 3746–3751.

    CAS  Google Scholar 

  53. Zhang, T.; Jiang, B.; Xu, Z.; Mendes, R. G.; Xiao, Y.; Chen, L.; Fang, L. W.; Gemming, T.; Chen, S. L.; Rümmeli, M. H. et al. Twinned growth behaviour of two-dimensional materials. Nat. Commun. 2016, 7, 13911.

    CAS  Google Scholar 

  54. Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

    Google Scholar 

  55. Lin, Z. Y.; Yin, A. X.; Mao, J.; Xia, Y.; Kempf, N.; He, Q. Y.; Wang, Y. L.; Chen, C. Y.; Zhang, Y. L.; Ozolins, V. et al. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Sci. Adv. 2016, 2, e1600993.

    Google Scholar 

  56. Guo, J.; Wang, L. Y.; Liu, Y.; Zhao, Z. P.; Zhu, E. B.; Lin, Z. Y.; Wang, P. Q.; Jia, C. C.; Yang, S. X.; Lee, S. J. et al. Highly reliable low-voltage memristive switching and artificial synapse enabled by van der Waals integration. Matter 2020, 2, 965–976.

    Google Scholar 

  57. Huang, F. T.; Joon Lim, S.; Singh, S.; Kim, J.; Zhang, L. Y.; Kim, J. W.; Chu, M. W.; Rabe, K. M.; Vanderbilt, D.; Cheong, S. W. Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2. Nat. Commun. 2019, 10, 4211.

    Google Scholar 

  58. Zhang, F.; Zhang, H. R.; Krylyuk, S.; Milligan, C. A.; Zhu, Y. Q.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2-and Mo1−x,WxTe2-based resistive memories. Nat. Mater. 2019, 18, 55–61.

    CAS  Google Scholar 

  59. Chen, C. J. Introduction to Scanning Tunneling Microscopy; Oxford University Press: New York, 1993.

    Google Scholar 

  60. Hoffman, J. E. Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors. Rep. Prog. Phys. 2011, 74, 124513.

    Google Scholar 

  61. Xue, J. M.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B. J. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10, 282–285.

    CAS  Google Scholar 

  62. Hill, H. M.; Rigosi, A. F.; Rim, K. T.; Flynn, G. W.; Heinz, T. F. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 2016, 16, 4831–4837.

    CAS  Google Scholar 

  63. Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152–158.

    CAS  Google Scholar 

  64. Pan, Y.; Fölsch, S.; Nie, Y. F.; Waters, D.; Lin, Y. C.; Jariwala, B.; Zhang, K. H.; Cho, K.; Robinson, J. A.; Feenstra, R. M. Quantum-confined electronic states arising from the moiré pattern of MoS2-WSe2 heterobilayers. Nano Lett. 2018, 18, 1849–1855.

    CAS  Google Scholar 

  65. Zhang, H.; Huang, J. X.; Wang, Y. W.; Liu, R.; Huai, X. L.; Jiang, J. J.; Anfuso, C. Atomic force microscopy for two-dimensional materials: A tutorial review. Opt. Commun. 2018, 406, 3–17.

    CAS  Google Scholar 

  66. Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933.

    CAS  Google Scholar 

  67. Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.

    Google Scholar 

  68. Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

    CAS  Google Scholar 

  69. Barja, S.; Refaely-Abramson, S.; Schuler, B.; Qiu, D. Y.; Pulkin, A.; Wickenburg, S.; Ryu, H.; Ugeda, M. M.; Kastl, C.; Chen, C. et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382.

    Google Scholar 

  70. Barja, S.; Wickenburg, S.; Liu, Z. F.; Zhang, Y.; Ryu, H.; Ugeda, M. M.; Hussain, Z.; Shen, Z. X.; Mo, S. K.; Wong, E. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 2016, 12, 751–756.

    CAS  Google Scholar 

  71. Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

    CAS  Google Scholar 

  72. Moon, S.; Kang, M. Y.; Kim, J. H.; Park, K. R.; Shin, C. Creation of optimal frequency for electrostatic force microscopy using direct digital synthesizer. Appl. Sci. 2017, 7, 704.

    Google Scholar 

  73. Du, J. L.; Liao, Q. L.; Hong, M. Y.; Liu, B. S.; Zhang, X. K.; Yu, H. H.; Xiao, J. K.; Gao, L.; Gao, F. F.; Kang, Z. et al. Piezotronic effect on interfacial charge modulation in mixed-dimensional van der Waals heterostructure for ultrasensitive flexible photodetectors. Nano Energy 2019, 58, 85–93.

    CAS  Google Scholar 

  74. Wang, Z. Z.; Gu, Y. S.; Qi, J. J.; Lu, S. N.; Li, P. F.; Lin, P.; Zhang, Y. Size dependence and UV irradiation tuning of the surface potential in single conical ZnO nanowires. RSC Adv. 2015, 5, 42075–42080.

    CAS  Google Scholar 

  75. Qi, J. J.; Lan, Y. W.; Stieg, A. Z.; Chen, J. H.; Zhong, Y. L.; Li, L. J.; Chen, C. D.; Zhang, Y.; Wang, K. L. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 2015, 6, 7430.

    CAS  Google Scholar 

  76. Zhang, X. K.; Liao, Q. L.; Kang, Z.; Liu, B. S.; Ou, Y.; Du, J. L.; Xiao, J. K.; Gao, L.; Shan, H. Y.; Luo, Y. et al. Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano 2019, 13, 3280–3291.

    CAS  Google Scholar 

  77. Zhang, X. K.; Liao, Q. L.; Liu, S.; Kang, Z.; Zhang, Z.; Du, J. L.; Li, F.; Zhang, S. H.; Xiao, J. K.; Liu, B. S. et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.

    CAS  Google Scholar 

  78. Rosenberger, M. R.; Chuang, H. J.; Phillips, M.; Oleshko, V. P.; McCreary, K. M.; Sivaram, S. V.; Hellberg, C. S.; Jonker, B. T. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 4550–4558.

    CAS  Google Scholar 

  79. Son, Y.; Li, M. Y.; Cheng, C. C.; Wei, K. H.; Liu, P. W.; Wang, Q. H.; Li, L. J.; Strano, M. S. Observation of switchable photoresponse of a monolayer WSe2-MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging. Nano Lett. 2016, 16, 3571–3577.

    CAS  Google Scholar 

  80. Zhang, S. S.; Zhang, N.; Zhao, Y.; Cheng, T.; Li, X. B.; Feng, R.; Xu, H.; Liu, Z. R.; Zhang, J.; Tong, L. M. Spotting the differences in two-dimensional materials—The Raman scattering perspective. Chem. Soc. Rev. 2018, 47, 3217–3240.

    CAS  Google Scholar 

  81. Lu, X.; Luo, X.; Zhang, J.; Quek, S. Y.; Xiong, Q. H. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 2016, 9, 3559–3597.

    CAS  Google Scholar 

  82. Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

    CAS  Google Scholar 

  83. Liu, B. S.; Liao, Q. L.; Zhang, X. K.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z.; Zhang, Z.; Zhang, Y. Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057–9066.

    CAS  Google Scholar 

  84. Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.

    Google Scholar 

  85. He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.

    CAS  Google Scholar 

  86. Liang, L. B.; Zhang, J.; Sumpter, B. G.; Tan, Q. H.; Tan, P. H.; Meunier, V. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano 2017, 11, 11777–11802.

    CAS  Google Scholar 

  87. Lin, M. L.; Tan, Q. H.; Wu, J. B.; Chen, X. S.; Wang, J. H.; Pan, Y. H.; Zhang, X.; Cong, X.; Zhang, J.; Ji, W. et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 2018, 12, 8770–8780.

    CAS  Google Scholar 

  88. Zhang, J.; Wang, J. H.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z. Y.; Lu, X. B.; Yu, H.; Chen, W.; Zhu, J. Q. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950–1956.

    CAS  Google Scholar 

  89. Lui, C. H.; Ye, Z. P.; Ji, C.; Chiu, K. C.; Chou, C. T.; Andersen, T. I.; Means-Shively, C.; Anderson, H.; Wu, J. M.; Kidd, T. et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 2015, 91, 165403.

    Google Scholar 

  90. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    CAS  Google Scholar 

  91. Kunstmann, J.; Mooshammer, F.; Nagler, P.; Chaves, A.; Stein, F.; Paradiso, N.; Plechinger, G.; Strunk, C.; Schüller, C.; Seifert, G. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 2018, 14, 801–805.

    CAS  Google Scholar 

  92. Liu, X.; Pei, J. J.; Hu, Z. H.; Zhao, W. J.; Liu, S.; Amara, M. R.; Watanabe, K.; Taniguchi, T.; Zhang, H.; Xiong, Q. H. Manipulating charge and energy transfer between 2D atomic layers via heterostructure engineering. Nano Lett. 2020, 20, 5359–5366.

    CAS  Google Scholar 

  93. Kozawa, D.; Carvalho, A.; Verzhbitskiy, I.; Giustiniano, F.; Miyauchi, Y.; Mouri, S.; Castro Neto, A. H.; Matsuda, K.; Eda, G. Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett. 2016, 16, 4087–4093.

    CAS  Google Scholar 

  94. Xu, W. S.; Kozawa, D.; Liu, Y.; Sheng, Y. W.; Wei, K.; Koman, V. B.; Wang, S. S.; Wang, X. C.; Jiang, T.; Strano, M. S. et al. Determining the optimized interlayer separation distance in vertical stacked 2D WS2:HBN:MoS2 heterostructures for exciton energy transfer. Small 2018, 14, 1703727.

    Google Scholar 

  95. Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202.

    CAS  Google Scholar 

  96. Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.

    CAS  Google Scholar 

  97. Wang, G. C.; Li, L.; Fan, W. H.; Wang, R. Y.; Zhou, S. S.; Lü, J. T.; Gan, L.; Zhai, T. Y. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Adv. Funct. Mater. 2018, 28, 1800339.

    Google Scholar 

  98. Varghese, A.; Saha, D.; Thakar, K.; Jindal, V.; Ghosh, S.; Medhekar, N. V.; Ghosh, S.; Lodha, S. Near-direct bandgap WSe2/ReS2 type-II pn heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics. Nano Lett. 2020, 20, 1707–1717.

    CAS  Google Scholar 

  99. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

    CAS  Google Scholar 

  100. Baranowski, M.; Surrente, A.; Klopotowski, L.; Urban, J. M.; Zhang, N.; Maude, D. K.; Wiwatowski, K.; Mackowski, S.; Kung, Y. C.; Dumcenco, D. et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der waals heterostructure. Nano Lett. 2017, 17, 6360–6365.

    CAS  Google Scholar 

  101. Ubrig, N.; Ponomarev, E.; Zultak, J.; Domaretskiy, D.; Zólyomi, V.; Terry, D.; Howarth, J.; Gutiérrez-Lezama, I.; Zhukov, A.; Kudrynskyi, Z. R. et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 2020, 19, 299–304.

    CAS  Google Scholar 

  102. Choi, J.; Hsu, W. T.; Lu, L. S.; Sun, L. Y.; Cheng, H. Y.; Lee, M. H.; Quan, J. M.; Tran, K.; Wang, C. Y.; Staab, M. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 2020, 6, eaba8866.

    CAS  Google Scholar 

  103. Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano 2014, 8, 12717–12724.

    CAS  Google Scholar 

  104. Heo, H.; Sung, J. H.; Cha, S.; Jang, B. G.; Kim, J. Y.; Jin, G.; Lee, D.; Ahn, J. H.; Lee, M. J.; Shim, J. H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 2015, 6, 7372.

    CAS  Google Scholar 

  105. Wang, K.; Huang, B.; Tian, M. K.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.

    CAS  Google Scholar 

  106. Zhu, H. M.; Wang, J.; Gong, Z. Z.; Kim, Y. D.; Hone, J.; Zhu, X. Y. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 2017, 17, 3591–3598.

    CAS  Google Scholar 

  107. Ji, Z. H.; Hong, H.; Zhang, J.; Zhang, Q.; Huang, W.; Cao, T.; Qiao, R. X.; Liu, C.; Liang, J.; Jin, C. H. et al. Robust Stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 2017, 11, 12020–12026.

    CAS  Google Scholar 

  108. Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.

    CAS  Google Scholar 

  109. Ceballos, F.; Ju, M. G.; Lane, S. D.; Zeng, X. C.; Zhao, H. Highly efficient and anomalous charge transfer in van der Waals trilayer semiconductors. Nano Lett. 2017, 17, 1623–1628.

    CAS  Google Scholar 

  110. Han, S. W.; Cha, G. B.; Frantzeskakis, E.; Razado-Colambo, I.; Avila, J.; Park, Y. S.; Kim, D.; Hwang, J.; Kang, J. S.; Ryu, S. et al. Band-gap expansion in the surface-localized electronic structure of MoS2(0002). Phys. Rev. B 2012, 86, 115105.

    Google Scholar 

  111. Coy Diaz, H.; Avila, J.; Chen, C. Y.; Addou, R.; Asensio, M. C.; Batzill, M. Direct observation of interlayer hybridization and dirac relativistic carriers in graphene/MoS2 van der Waals heterostructures. Nano Lett. 2015, 15, 1135–1140.

    CAS  Google Scholar 

  112. Wilson, N. R.; Nguyen, P. V.; Seyler, K.; Rivera, P.; Marsden, A. J.; Laker, Z. P. L.; Constantinescu, G. C.; Kandyba, V.; Barinov, A.; Hine, N. D. M. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 2017, 3, e1601832.

    Google Scholar 

  113. Pozzi, E. A.; Goubert, G.; Chiang, N.; Jiang, N.; Chapman, C. T.; McAnally, M. O.; Henry, A. I.; Seideman, T.; Schatz, G. C.; Hersam, M. C. et al. Ultrahigh-vacuum tip-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 4961–4982.

    CAS  Google Scholar 

  114. Luo, Y.; Engelke, R.; Mattheakis, M.; Tamagnone, M.; Carr, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Kim, P.; Wilson, W. L. In situ nanoscale imaging of moire superlattices in twisted van der Waals heterostructures. Nat. Commun. 2020, 11, 4209.

    Google Scholar 

  115. Wang, L.; Xu, X. G. Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction. Nat. Commun. 2015, 6, 8973.

    CAS  Google Scholar 

  116. Ziatdinov, M. A.; Fujii, S.; Kiguchi, M.; Enoki, T.; Jesse, S.; Kalinin, S. V. Data mining graphene: Correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects. Nanotechnology 2016, 27, 495703.

    Google Scholar 

  117. Kalinin, S. V.; Strelcov, E.; Belianinov, A.; Somnath, S.; Vasudevan, R. K.; Lingerfelt, E. J.; Archibald, R. K.; Chen, C. M.; Proksch, R.; Laanait, N. et al. Big, deep, and smart data in scanning probe microscopy. ACS Nano 2016, 10, 9068–9086.

    CAS  Google Scholar 

  118. Ziatdinov, M.; Dyck, O.; Maksov, A.; Li, X. F.; Sang, X. H.; Xiao, K.; Unocic, R. R.; Vasudevan, R.; Jesse, S.; Kalinin, S. V. Deep learning of atomically resolved scanning transmission electron microscopy images: Chemical identification and tracking local transformations. ACS Nano 2017, 11, 12742–12752.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51991340, 51991342, 51527802, 51972022, 51722203, and 51672026), the Overseas Expertise Introduction Projects for Discipline Innovation (No. B14003), the National Key Research and Development Program of China (No. 2016YFA0202701 and 2018YFA0703503), the Natural Science Foundation of Beijing Municipality (No. Z180011), and the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-18-004A2 and FRF-TP-18-001C1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Zhang or Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Du, J., Yu, H. et al. The coupling effect characterization for van der Waals structures based on transition metal dichalcogenides. Nano Res. 14, 1734–1751 (2021). https://doi.org/10.1007/s12274-020-3253-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3253-3

Keywords

Navigation