Skip to main content
Log in

Fabrication of metal-organic framework-based nanofibrous separator via one-pot electrospinning strategy

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

Metal-organic framework (MOF)/polymer composites have attracted extensive attention in the recent years. However, it still remains challenging to efficiently and effectively fabricate these composite materials. In this study, we propose a facile one-pot electrospinning strategy for preparation of HKUST-1/polyacrylonitrile (PAN) nanofibrous membranes from a homogeneous stock solution containing HKUST-1 precursors and PAN. MOF crystallization and polymer solidification occur simultaneously during the electrospinning process, thus avoiding the issues of aggregation and troublesome multistep fabrication of the conventional approach. The obtained HKUST-1/PAN electrospun membranes show uniform MOF distribution throughout the nanofibers and yield good mechanical properties. The membranes are used as separators in Li-metal full batteries under harsh testing conditions, using an ultrathin Li-metal anode, a high mass loading cathode, and the HKUST-1/PAN nanofibrous separator. The results demonstrate significantly improved cycling performance (capacity retention of 83.1% after 200 cycles) under a low negative to positive capacity ratio (N/P ratio of 1.86). The improvement can be attributed to an enhanced wettability of the separator towards electrolyte stemmed from the nanofibrous structure, and a uniform lithium ion flux stabilized by the open metal sites of uniformly distributed HKUST-1 particles in the membrane during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lei, Z. W.; Shen, J. L.; Zhang, W. D.; Wang, Q. R.; Wang, J.; Deng, Y. H.; Wang, C. Y. Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Res. 2020, 13, 2259–2267.

    Article  CAS  Google Scholar 

  2. Chen, L. J.; Ding, X.; Huo, J.; El Hankari, S.; Bradshaw, D. Facile synthesis of magnetic macroporous polymer/MOF composites as separable catalysts. J. Mater. Sci. 2019, 54, 370–382.

    Article  Google Scholar 

  3. Shi, Z. L.; Tao, Y.; Wu, J. S.; Zhang, C. Z.; He, H. L.; Long, L. L.; Lee, Y.; Li, T.; Zhang, Y. B. Robust metal-triazolate frameworks for CO2 capture from flue gas. J. Am. Chem. Soc. 2020, 142, 2750–2754.

    Article  CAS  Google Scholar 

  4. Wu, C. H.; Chou, L. Y.; Long, L. L.; Si, X. M.; Lo, W. S.; Tsung, C. K.; Li, T. Structural control of uniform MOF-74 microcrystals for the study of adsorption kinetics. ACS Appl. Mater. Interfaces 2019, 11, 35820–35826.

    Article  CAS  Google Scholar 

  5. Suresh, K.; Matzger, A. J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework (MOF). Angew. Chem., Int. Ed. 2019, 58, 16790–16794.

    Article  CAS  Google Scholar 

  6. Zhu, H.; Yang, X.; Cranston, E. D.; Zhu, S. P. Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications. Adv. Mater. 2016, 28, 7652–7657.

    Article  CAS  Google Scholar 

  7. Kalaj, M.; Bentz, K. C.; Ayala, S. Jr.; Palomba, J. M.; Barcus, K. S.; Katayama, Y.; Cohen, S. M. MOF-polymer hybrid materials: From simple composites to tailored architectures. Chem. Rev. 2020, 120, 8267–8302.

    Article  CAS  Google Scholar 

  8. Radacsi, N.; Campos, F. D.; Chisholm, C. R. I.; Giapis, K. P. Spontaneous formation of nanoparticles on electrospun nanofibres. Nat. Commun. 2018, 9, 4740.

    Article  Google Scholar 

  9. Zhang, C. L.; Lu, B. R.; Cao, F. H.; Wu, Z. Y.; Zhang, W.; Cong, H. P.; Yu, S. H. Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy 2019, 55, 226–233.

    Article  CAS  Google Scholar 

  10. Dou, Y. B.; Zhang, W. J.; Kaiser, A. Electrospinning of metal-organic frameworks for energy and environmental applications. Adv. Sci. 2020, 7, 1902590.

    Article  CAS  Google Scholar 

  11. Ostermann, R.; Cravillon, J.; Weidmann, C.; Wiebcke, M.; Smarsly, B. M. Metal-organic framework nanofibers via electrospinning. Chem. Commun. 2011, 47, 442–444.

    Article  CAS  Google Scholar 

  12. Lu, A. X.; McEntee, M.; Browe, M. A.; Hall, M. G.; DeCoste, J. B.; Peterson, G. W. MOFabric: Electrospun nanofiber mats from PVDF/UiO-66-NH2 for chemical protection and decontamination. ACS Appl. Mater. Interfaces 2017, 9, 13632–13636.

    Article  CAS  Google Scholar 

  13. Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem., Int. Ed. 2016, 55, 5990–5993.

    Article  CAS  Google Scholar 

  14. Lu, A. X.; Ploskonka, A. M.; Tovar, T. M.; Peterson, G. W.; DeCoste, J. B. Direct surface growth of UiO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal. Ind. Eng. Chem. Res. 2017, 56, 14502–14506.

    Article  CAS  Google Scholar 

  15. Li, T. Y.; Yuan, X. Z.; Zhang, L.; Song, D. T.; Shi, K. Y.; Bock, C. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochem. Energy Rev. 2020, 3, 43–80.

    Article  Google Scholar 

  16. Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.

    Article  CAS  Google Scholar 

  17. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    Article  CAS  Google Scholar 

  18. Zhang, W. D.; Zhuang, H. L.; Fan, L.; Gao, L. N.; Lu, Y. Y. A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries. Sci. Adv. 2018, 4, eaar4410.

    Article  Google Scholar 

  19. Zhang, W. D.; Fan, L.; Tong, Z. M.; Miao, J. Z.; Shen, Z. Y.; Li, S. Y.; Chen, F.; Qiu, Y. C.; Lu, Y. Y. Stable Li-metal deposition via a 3D nanodiamond matrix with ultrahigh Young’s modulus. Small Methods 2019, 3, 1900325.

    Article  CAS  Google Scholar 

  20. Zhang, W. D.; Wu, Q.; Huang, J. X.; Fan, L.; Shen, Z. Y.; He, Y.; Feng, Q.; Zhu, G. N.; Lu, Y. Y. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, 2001740.

    Article  CAS  Google Scholar 

  21. Kim, M. S.; Kim, M. S.; Do, V.; Lim, Y. R.; Nah, I. W.; Archer, L. A.; Cho, W. I. Designing solid-electrolyte interphases for lithium sulfur electrodes using ionic shields. Nano Energy 2017, 41, 573–582.

    Article  CAS  Google Scholar 

  22. Zhang, W. D.; Zhang, S. Q.; Fan, L.; Gao, L. N.; Kong, X. Q.; Li, S. Y.; Li, J.; Hong, X.; Lu, Y. Y. Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 2019, 4, 644–650.

    Article  CAS  Google Scholar 

  23. Liu, W.; Mi, Y. Y.; Weng, Z.; Zhong, Y. R.; Wu, Z. S.; Wang, H. L. Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chem. Sci. 2017, 8, 4285–4291.

    Article  CAS  Google Scholar 

  24. Zhang, W. D.; Tu, Z. Y.; Qian, J. W.; Choudhury, S.; Archer, L. A.; Lu, Y. Y. Design principles of functional polymer separators for high-energy, metal-based batteries. Small 2018, 14, 1703001.

    Article  Google Scholar 

  25. Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175.

    Article  Google Scholar 

  26. Ameloot, R.; Gobechiya, E.; Uji-i, H.; Martens, J. A.; Hofkens, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions. Adv. Mater. 2010, 22, 2685–2688.

    Article  CAS  Google Scholar 

  27. Lin, R. J.; Villacorta Hernandez, B.; Ge, L.; Zhu, Z. H. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces. J. Mater. Chem. A 2018, 6, 293–312.

    Article  CAS  Google Scholar 

  28. Efome, J. E.; Rana, D.; Matsuura, T.; Lan, C. Q. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl. Mater. Interfaces 2018, 10, 18619–18629.

    Article  CAS  Google Scholar 

  29. Elkhaldi, R. M.; Guclu, S.; Koyuncu, I. Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles. Desalin. Water Treat. 2016, 57, 26003–26013.

    Article  CAS  Google Scholar 

  30. Huang, L. W.; Arena, J. T.; Manickam, S. S.; Jiang, X. Q.; Willis, B. G.; McCutcheon, J. R. Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification. J. Membr. Sci. 2014, 460, 241–249.

    Article  CAS  Google Scholar 

  31. Smith, S. A.; Park, J. H.; Williams, B. P.; Joo, Y. L. Polymer/ceramic co-continuous nanofiber membranes via room-curable organopolysilazane for improved lithium-ion battery performance. J. Mater. Sci. 2017, 52, 3657–3669.

    Article  CAS  Google Scholar 

  32. Lee, B. S.; Cui, S.; Xing, X.; Liu, H. D.; Yue, X. J.; Petrova, V.; Lim, H. D.; Chen, R. K.; Liu, P. Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 2018, 70, 38928–38935.

    Article  Google Scholar 

  33. Yanilmaz, M.; Lu, Y.; Zhu, J. D.; Zhang, X. W. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. J. Power Sources 2016, 313, 205–212.

    Article  CAS  Google Scholar 

  34. Fang, C. C.; Wang, X. F.; Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 2019, 1, 152–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the State Key Laboratory of Chemical Engineering at Zhejiang University (No. SKL-ChE-20D01), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No. 2017ZT07C291), Shenzhen Science and Technology Program (No. KQTD20170810141424366), 2019 Special Program for Central Government Guiding Local Science and Technology Development: Environmental Purification Functional Materials Research Platform, and Shenzhen Key Laboratory of Advanced Materials Product Engineering (No. ZDSYS20190911164401990) for supporting this research work. The authors also thank Ms. Na Zheng, Ms. Sudan Shen, Ms. Li Xu and Ms. Qun Pu in the analysis center of the State Key Laboratory of Chemical Engineering at Zhejiang university for the help on performing SEM, TEM, TGA measurement and tensile test, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Zhu or Shiping Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhang, W., Zhu, H. et al. Fabrication of metal-organic framework-based nanofibrous separator via one-pot electrospinning strategy. Nano Res. 14, 1465–1470 (2021). https://doi.org/10.1007/s12274-020-3203-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3203-0

Keywords