Skip to main content
Log in

Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The urea oxidation reaction has attracted increasing attention. Here, porous rod-like Ni2P/Ni assemblies, which consist of numerous nanoparticle subunits with matching interfaces at the nanoscale have been synthesized via a simple phosphating approach. Density functional theory calculations and density of states indicate that porous rod-like Ni2P/Ni assemblies can significantly enhance the activity of chemical bonds and the conductivity compared with NiO/Ni toward the urea oxidation reaction. The optimal catalyst of Ni2P/Ni can deliver a low overpotential of 50 mV at 10 mA·cm−2 and Tafel slope of 87.6 mV·dec−1 in urea oxidation reaction. Moreover, the constructed electrolytic cell exhibits a current density of 10 mA·cm−2 at a cell voltage of 1.47 V and an outstanding durability in the two-electrode system. This work has provided a new possibility to fabricate metal phosphides-metal assemblies with advanced performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.

    CAS  Google Scholar 

  2. Wang, T. T.; Wang, M.; Yang, H.; Xu, M. Q.; Zuo, C. D.; Feng, K.; Xie, M.; Deng, J.; Zhong, J.; Zhou, W. et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 2019, 12, 3522–3529.

    CAS  Google Scholar 

  3. Xie, C.; Yan, D. F.; Chen, W.; Zou, Y. Q.; Chen, R.; Zang, S. Q.; Wang, Y. Y.; Yao, X. D.; Wang, S. Y. Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Mater. Today 2019, 31, 47–68.

    CAS  Google Scholar 

  4. Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.

    Google Scholar 

  5. Ge, J.; Zhang, W.; Tu, J.; Xia, T.; Chen, S. P.; Xie, G. Suppressed Jahn-Teller distortion in MnCo2O4@Ni2P heterostructures to promote the overall water splitting. Small, 2020, 16, 2001856.

    CAS  Google Scholar 

  6. Li, C. C.; Liu, Y. W.; Zhuo, Z. W.; Ju, H. X.; Li, D. A.; Guo, Y. P.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. Local charge distribution engineered by Schottky heterojunctions toward urea electrolysis. Adv. Energy Mater. 2018, 8, 1801775.

    Google Scholar 

  7. Wang, X. X.; Wang, J. M.; Sun, X. P.; Wei, S.; Cui, L.; Yang, W. R.; Liu, J. Q. Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res. 2018, 11, 988–996.

    CAS  Google Scholar 

  8. Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.

    CAS  Google Scholar 

  9. Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921.

    CAS  Google Scholar 

  10. Wang, L.; Zhu, S. Q.; Marinkovic, N.; Kattel, S.; Shao, M. H.; Yang, B. L.; Chen, J. G. Insight into the synergistic effect between nickel and tungsten carbide for catalyzing urea electrooxidation in alkaline electrolyte. Appl. Catal. B Environ. 2018, 232, 365–370.

    CAS  Google Scholar 

  11. Xiao, X.; Zou, L. L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301–331.

    CAS  Google Scholar 

  12. Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447–454.

    CAS  Google Scholar 

  13. Wang, J. M.; Kong, R. M.; Asiri, A. M.; Sun, X. P. Replacing oxygen evolution with hydrazine oxidation at the anode for energy-saving electrolytic hydrogen production. ChemElectroChem 2017, 4, 481–484.

    CAS  Google Scholar 

  14. Wei, C.; Sun, S. N.; Mandler, D.; Wang, X.; Qiao, S. Z.; Xu, Z. J. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem. Soc. Rev. 2019, 48, 2518–2534.

    CAS  Google Scholar 

  15. Yang, D. W.; Gu, Y.; Yu, X.; Lin, Z. X.; Xue, H. G.; Feng, L. G. Nanostructured Ni2P-C as an efficient catalyst for urea electrooxidation. ChemElectroChem 2018, 5, 659–664.

    CAS  Google Scholar 

  16. Yan, L.; Sun, Y. L.; Hu, E. L.; Ning, J. Q.; Zhong, Y. J.; Zhang, Z. Y.; Hu, Y. Facile in-situ growth of Ni2P/Fe2P nanohybrids on Ni foam for highly efficient urea electrolysis. J. Colloid Interface Sci. 2019, 541, 279–286.

    CAS  Google Scholar 

  17. Zhu, B. J.; Liang, Z. B.; Zou, R. Q. Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 2020, 16, 1906133.

    CAS  Google Scholar 

  18. Liu, D. N.; Liu, T. T.; Zhang, L. X.; Qu, F. L.; Du, G.; Asiri, A. M.; Sun, X. P. High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J. Mater. Chem. A 2017, 5, 3208–3213.

    CAS  Google Scholar 

  19. Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.

    CAS  Google Scholar 

  20. Liu, X.; Ni, K.; Wen, B.; Guo, R. T.; Niu, C. J.; Meng, J. S.; Li, Q.; Wu, P. J.; Zhu, Y. W.; Wu, X. J. et al. Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett. 2019, 4, 2585–2592.

    CAS  Google Scholar 

  21. Tong, Y.; Chen, P. Z.; Zhang, M. X.; Zhou, T. P.; Zhang, L. D.; Chu, W. S.; Wu, C. Z.; Xie, Y. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal. 2018, 8, 1–7.

    Google Scholar 

  22. Yu, Z. Y.; Duan, Y.; Gao, M. R.; Lang, C. C.; Zheng, Y. R.; Yu, S. H. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chem. Sci. 2017, 8, 968–973.

    CAS  Google Scholar 

  23. Meguerdichian, A. G.; Jafari, T.; Shakil, M. R.; Miao, R.; Achola, L. A.; MacHaria, J.; Shirazi-Amin, A.; Suib, S. L. Synthesis and electrocatalytic activity of ammonium nickel phosphate, [NH4]NiPO4·6H2O, and β-nickel pyrophosphate, β-Ni2P2O7: Catalysts for electrocatalytic decomposition of urea. Inorg. Chem. 2018, 57, 1815–1823.

    CAS  Google Scholar 

  24. Peng, C. Y.; Kang, L.; Cao, S.; Chen, Y.; Lin, Z. S.; Fu, W. F. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem., Int. Ed. 2015, 54, 15725–15729.

    CAS  Google Scholar 

  25. Luo, Z. Z.; Zhang, Y.; Zhang, C. H.; Tan, H. T.; Li, Z.; Abutaha, A.; Wu, X. L.; Xiong, Q. H.; Khor, K. A.; Hippalgaonkar, K. et al. Multifunctional 0D-2D Ni2P nanocrystals-black phosphorus heterostructure. Adv. Energy Mater. 2017, 7, 1601285.

    Google Scholar 

  26. Wen, J.; Feng, Z.; Liu, H. R.; Chen, T.; Yang, Y. Q.; Li, S. Z.; Sheng, S.; Fang, G. J. In-situ synthesized Ni2P nanosheet arrays as the cathode for novel alkaline Ni//Zn rechargeable battery. Appl. Surf. Sci. 2019, 485, 462–467.

    CAS  Google Scholar 

  27. An, C. H.; Wang, Y. J.; Wang, Y. P.; Liu, G.; Li, L.; Qiu, F. Y.; Xu, Y. N.; Jiao, L. F.; Yuan, H. T. Facile synthesis and superior supercapacitor performances of Ni2P/RGO nanoparticles. RSC Adv. 2013, 3, 4628–4633.

    CAS  Google Scholar 

  28. Jiang, P.; Liu, Q.; Sun, X. P. NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014, 6, 13440–13445.

    CAS  Google Scholar 

  29. Hao, S.; Yang, L. B.; Liu, D. N.; Kong, R. M.; Du, G.; Asiri, A. M.; Yang, Y. C.; Sun, X. P. Integrating natural biomass electro-oxidation and hydrogen evolution: Using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Chem. Commun. 2017, 53, 5710–5713.

    CAS  Google Scholar 

  30. Wang, J. M.; Ma, X.; Liu, T. T.; Liu, D. N.; Hao, S.; Du, G.; Kong, R. M.; Asiri, A. M.; Sun, X. P. NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production. Mater. Today Energy 2017, 3, 9–14.

    Google Scholar 

  31. Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

    CAS  Google Scholar 

  32. Ni, B.; Zhang, Q. H.; Ouyang, C.; Zhang, S. M.; Yu, B.; Zhuang, J.; Gu, L.; Wang, X. The synthesis of sub-nano-thick Pd nanobelt-based materials for enhanced hydrogen evolution reaction activity. CCS Chem. 2020, 2, 642–654.

    CAS  Google Scholar 

  33. Zhu, D. D.; Guo, C. X.; Liu, J. L.; Wang, L.; Du, Y.; Qiao, S. Z. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem. Commun. 2017, 53, 10906–10909.

    CAS  Google Scholar 

  34. Xu, Y.; Chai, X. J.; Ren, T. L.; Yu, S. S.; Yu, H. J.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Ir-doped Ni-based metal-organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation. Chem. Commun. 2020, 56, 2151–2154.

    CAS  Google Scholar 

  35. Lan, R.; Tao, S. W.; Irvine, J. T. S. A direct urea fuel cell—Power from fertiliser and waste. Energy Environ. Sci. 2010, 3, 438–441.

    CAS  Google Scholar 

  36. Ding, R.; Qi, L.; Jia, M. J.; Wang, H. Y. Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 2014, 6, 1369–1376.

    CAS  Google Scholar 

  37. Chen, S.; Duan, J. J.; Vasileff, A.; Qiao, S. Z. Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew. Chem., Int. Ed. 2016, 55, 3804–3808.

    CAS  Google Scholar 

  38. Liang, Y. H.; Liu, Q.; Asiri, A. M.; Sun, X. P. Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochim. Acta 2015, 153, 456–460.

    CAS  Google Scholar 

  39. Guo, F.; Ye, K.; Du, M. M.; Huang, X. M.; Cheng, K.; Wang, G. L.; Cao, D. X. Electrochemical impedance analysis of urea electrooxidation mechanism on nickel catalyst in alkaline medium. Electrochim. Acta 2016, 210, 474–482.

    CAS  Google Scholar 

  40. Sha, L. N.; Ye, K.; Wang, G.; Shao, J. Q.; Zhu, K.; Cheng, K.; Yan, J.; Wang, G. L.; Cao, D. X. Hierarchical NiCo2O4 nanowire array supported on Ni foam for efficient urea electrooxidation in alkaline medium. J. Power Sources 2019, 412, 265–271.

    CAS  Google Scholar 

  41. Zeng, M.; Wu, J. H.; Li, Z. Y.; Wu, H. H.; Wang, J. L.; Wang, H. L.; He, L.; Yang, X. J. Interlayer effect in NiCo layered double hydroxide for promoted electrocatalytic urea oxidation. ACS Sustainable Chem. Eng. 2019, 7, 4777–4783.

    CAS  Google Scholar 

  42. Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.

    CAS  Google Scholar 

  43. Li, D. D.; Xu, H. Q.; Jiao, L.; Jiang, H. L. Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem 2019, 7, 100005.

    Google Scholar 

  44. Liu, Q. D.; Wang, X. Polyoxometalate clusters: Sub-nanometer building blocks for construction of advanced materials. Matter 2020, 2, 816–841.

    Google Scholar 

  45. Liu, M.; Zhang, R.; Zhang, L. X.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Kong, R. M.; Sun, X. P. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorg. Chem. Front. 2017, 4, 420–423.

    CAS  Google Scholar 

  46. Xie, Y. N.; Zhang, Z. Y.; Zhong, D. L.; Peng, L. M. Speeding up carbon nanotube integrated circuits through three-dimensional architecture. Nano Res. 2019, 12, 1810–1816.

    CAS  Google Scholar 

  47. Zhang, S. M.; Shi, W. X.; Rong, S. J.; Li, S. Z.; Zhuang, J.; Wang, X. Chirality evolution from sub-1 nanometer nanowires to the macroscopic helical structure. J. Am. Chem. Soc. 2020, 142, 1375–1381.

    CAS  Google Scholar 

  48. Li, Q.; Li, N.; An, J.; Pang, H. Controllable synthesis of a mesoporous NiO/Ni nanorod as an excellent catalyst for urea electro-oxidation. Inorg. Chem. Front. 2020, 7, 2089–2096.

    CAS  Google Scholar 

  49. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  50. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  51. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  52. Wexler, R. B.; Martirez, J. M. P.; Rappe, A. M. Active role of phosphorus in the hydrogen evolving activity of nickel phosphide (0001) surfaces. ACS Catal. 2017, 7, 7718–7725.

    CAS  Google Scholar 

  53. Yuan, Y.; Dong, X. Q.; Ricardez-Sandoval, L. A density functional theory analysis on syngas adsorption on NiO (100) surface. Appl. Surf. Sci. 2019, 498, 143782.

    CAS  Google Scholar 

  54. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

    CAS  Google Scholar 

  55. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Google Scholar 

  56. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    CAS  Google Scholar 

  57. Zhou, K.; Zhou, W. J.; Yang, L. J.; Lu, J.; Cheng, S.; Mai, W. J.; Tang, Z. H.; Li, L. G.; Chen, S. W. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach. Adv. Funct. Mater. 2015, 25, 7530–7538.

    Google Scholar 

  58. Wang, G.; Ye, K.; Shao, J. Q.; Zhang, Y. Y.; Zhu, K.; Cheng, K.; Yan, J.; Wang, G. L.; Cao, D. X. Porous Ni2P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 2018, 43, 9316–9325.

    CAS  Google Scholar 

  59. Lin, Y.; He, L. B.; Chen, T.; Zhou, D.; Wu, L.; Hou, X. D.; Zheng, C. B. Cost-effective and environmentally friendly synthesis of 3D Ni2P from scrap nickel for highly efficient hydrogen evolution in both acidic and alkaline media. J. Mater. Chem. A 2018, 6, 4088–4094.

    CAS  Google Scholar 

  60. Miao, Y. Q.; Ouyang, L.; Zhou, S. L.; Xu, L. N.; Yang, Z. Y.; Xiao, M. S.; Ouyang, R. Z. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens. Bioelectron. 2014, 53, 428–439.

    CAS  Google Scholar 

  61. Vedharathinam, V.; Botte, G. G. Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium. Electrochim. Acta 2013, 108, 660–665.

    CAS  Google Scholar 

  62. Zhang, X.; Liu, Y. Y.; Xiong, Q. Z.; Liu, G. Q.; Zhao, C. J.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Vapour-phase hydrothermal synthesis of Ni2P nanocrystallines on carbon fiber cloth for high-efficiency H2 production and simultaneous urea decomposition. Electrochim. Acta 2017, 254, 44–49.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U1904215 and 21671170), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), and Qinglan Project of Jiangsu and Program for Colleges Natural Science Research in Jiangsu Province (No. 18KJB150036). We also acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziqi Tian or Huan Pang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, X., Gu, J. et al. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 14, 1405–1412 (2021). https://doi.org/10.1007/s12274-020-3190-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3190-1

Keywords

Navigation