Skip to main content
Log in

Carbon nanodots: a new precursor to achieve reactive nanoporous HOPG surfaces

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the present work we develop an electrochemical assisted method to form nanopores on the surface of highly oriented pyrolytic graphite (HOPG), which was accomplished by a simple electrochemical route and a scalable nanomaterial, carbon nanodots, without applying high voltages, high temperatures or toxic reagents. HOPG electrodes are in a solution of N-enrich carbon nanodots in acidic media and the potential scans applied on HOPG lead to the formation of a spatially inhomogeneous porous surface. The diameter of the resulting nanopores can be tuned by controlling the number of electrochemical reduction cycles. The resulting nanoporous surfaces are characterized by atomic force microscopy, Raman spectroscopy, scanning electrochemical microscopy, electrochemical impedance spectroscopy and electrochemistry. These nanoporous HOPG showed high capacitance. Hence the potential of these surfaces to the development of energy storage devices is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rajagopalan, R.; Ponnaiyan, A.; Mankidy, P. J.; Brooks, A. W.; Yi, B.; Foley, H. C. Molecular sieving platinum nanoparticlecatalysts kinetically frozen in nanoporous carbon. Chem. Commun. 2004, 2498–2499.

    Google Scholar 

  2. Hauser, A. W.; Schwerdtfeger, P. Nanoporous graphene membranes for efficient 3He/4He separation. J. Phys. Chem. Lett. 2012, 3, 209–213.

    Article  CAS  Google Scholar 

  3. Han, T. H.; Huang, Y. K.; Tan, A. T. L.; Dravid, V. P.; Huang, J. X. Steam etched porous graphene oxide network for chemical sensing. J. Am. Chem. Soc. 2011, 133, 15264–15267.

    Article  CAS  Google Scholar 

  4. Soni, R.; Bhange, S. N.; Kurungot, S. A 3D nanoribbon-like Pt-free oxygen reduction reaction electrocatalyst derived from waste leather for anion exchange membrane fuel cells and zinc-air batteries. Nanoscale 2019, 11, 7893–7902.

    Article  CAS  Google Scholar 

  5. Mo, R. W.; Li, F.; Tan, X. Y.; Xu, P. C.; Tao, R.; Shen, G. R.; Lu, X.; Liu, F.; Shen, L.; Xu, B. et al. High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries. Nat. Commun. 2019, 10, 1474.

    Article  CAS  Google Scholar 

  6. Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 2014, 26, 849–864.

    Article  CAS  Google Scholar 

  7. Khiari, B.; Jeguirim, M.; Limousy, L.; Bennici, S. Biomass derived chars for energy applications. Renew. Sustain. Energy Rev. 2019, 105, 253–273.

    Article  CAS  Google Scholar 

  8. Hui, F.; Li, B.; He, P. A.; Hu, J.; Fang, Y. Z. Electrochemical fabrication of nanoporous polypyrrole film on HOPG using nanobubbles as templates. Electrochem. Commun. 2009, 11, 639–642.

    Article  CAS  Google Scholar 

  9. Hugentobler, M.; Bonanni, S.; Sautier, A.; Harbich, W. Morphology and stability of Au nanoclusters in HOPG nanopits of well-defined depth. Eur. Phys. J. D 2011, 63, 215–220.

    Article  CAS  Google Scholar 

  10. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  CAS  Google Scholar 

  11. Jana, D.; Vasista, A. B.; Jog, H.; Tripathi, R. P. N.; Allen, M.; Allen, J.; Pavan Kumar, G. V. V-shaped active plasmonic meta-polymers. Nanoscale 2019, 11, 3799–3803.

    Article  CAS  Google Scholar 

  12. Shen, A. L.; Zou, Y. Q.; Wang, Q.; Dryfe, R. A. W.; Huang, X. B.; Dou, S.; Dai, L. M.; Wang, S. Y. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 53, 10804–10808.

    Article  CAS  Google Scholar 

  13. Kurra, N.; Prakash, G.; Basavaraja, S.; Fisher, T. S.; Kulkarni, G. U.; Reifenberger, R. G. Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography. Nanotechnology 2011, 22, 245302.

    Article  CAS  Google Scholar 

  14. Corgier, B. P.; Bélanger, D. Electrochemical surface nanopatterning using microspheres and aryldiazonium. Langmuir 2010, 26, 5991–5997.

    Article  CAS  Google Scholar 

  15. Cui, L.; Xu, Y. H.; Liu, B. P.; Yang, W. R.; Song, Z. Q.; Liu, J. Q. Well-controlled preparation of evenly distributed nanoporous HOPG surface via diazonium salt assisted electrochemical etching process. Carbon 2016, 102, 419–425.

    Article  CAS  Google Scholar 

  16. Phan, T. H.; Van Gorp, H.; Li, Z.; Trung Huynh, T. M.; Fujita, Y.; Verstraete, L.; Eyley, S.; Thielemans, W.; Uji-i, H.; Hirsch, B. E. et al. Graphite and graphene fairy circles: A bottom-up approach for the formation of nanocorrals. ACS Nano 2019, 13, 5559–5571.

    Article  CAS  Google Scholar 

  17. Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

    Article  CAS  Google Scholar 

  18. Rigodanza, F.; Đorđević, L.; Arcudi, F.; Prato, M. Customizing the electrochemical properties of carbon nanodots by using quinones in bottom-up synthesis. Angew. Chem., Int. Ed. 2018, 57, 5062–5067.

    Article  CAS  Google Scholar 

  19. Gutiérrez-Sánchez, C.; Mediavilla, M.; Guerrero-Esteban, T.; Revenga-Parra, M.; Pariente, F.; Lorenzo, E. Direct covalent immobilization of new nitrogen-doped carbon nanodots by electrografting for sensing applications. Carbon 2020, 159, 303–310.

    Article  CAS  Google Scholar 

  20. Abad, J. M.; Tesio, Á. Y.; Pariente, F.; Lorenzo, E. Patterning gold nanoparticle using scanning electrochemical microscopy. J. Phys. Chem. C 2013, 117, 22087–22093.

    Article  CAS  Google Scholar 

  21. Abad, J. M.; Tesio, A. Y.; Martínez-Periñán, E.; Pariente, F.; Lorenzo, E. Imaging resolution of biocatalytic activity using nanoscale scanning electrochemical microscopy. Nano Res. 2018, 11, 4232–4244.

    Article  CAS  Google Scholar 

  22. Wang, Y. J.; Limon-Petersen, J. G.; Compton, R. G. Measurement of the diffusion coefficients of [Ru(NH3)6]3+ and [Ru(NH3)6]2+ in aqueous solution using microelectrode double potential step chronoamperometry. J. Electroanal. Chem. 2011, 652, 13–17.

    Article  CAS  Google Scholar 

  23. Nioradze, N.; Chen, R.; Kim, J.; Shen, M.; Santhosh, P.; Amemiya, S. Origins of nanoscale damage to glass-sealed platinum electrodes with submicrometer and nanometer size. Anal. Chem. 2013, 85, 6198–6202.

    Article  CAS  Google Scholar 

  24. Yuan, W. J.; Zhou, Y.; Li, Y. R.; Li, C.; Peng, H. L.; Zhang, J.; Liu, Z. F.; Dai, L. M.; Shi, G. Q. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 2013, 3, 2248.

    Article  Google Scholar 

  25. Zoval, J. V.; Lee, J.; Gorer, S.; Penner, R. M. Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces. J. Phys. Chem. B 1998, 102, 1166–1175.

    Article  CAS  Google Scholar 

  26. Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 3, 2367–2375.

    Article  CAS  Google Scholar 

  27. Jurewicz, K.; Frackowiak, E.; Béguin, F. Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl. Phys. A 2004, 78, 981–987.

    Article  CAS  Google Scholar 

  28. Morales, G. M.; Schifani, P.; Ellis, G.; Ballesteros, C.; Martínez, G.; Barbero, C.; Salavagione, H. J. High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon 2011, 49, 2809–2816.

    Article  CAS  Google Scholar 

  29. Robinson, R. S. Morphology and electrochemical effects of defects on highly oriented pyrolytic graphite. J. Electrochem. Soc. 1991, 138, 2412.

    Article  CAS  Google Scholar 

  30. McDermott, M. T.; Kneten, K.; McCreery, R. L. Anthraquinonedisulfonate adsorption, electron-transfer kinetics, and capacitance on ordered graphite electrodes: the important role of surface defects. J. Phys. Chem. 1992, 96, 3124–3130.

    Article  CAS  Google Scholar 

  31. Sun, T.; Yu, Y.; Zacher, B. J.; Mirkin, M. V. Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 14120–14123.

    Article  CAS  Google Scholar 

  32. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

    Article  CAS  Google Scholar 

  33. Sokolov, A. P.; Buchenau, U.; Steffen, W.; Frick, B.; Wischnewski, A. Comparison of Raman- and neutron-scattering data for glass-forming systems. Phys. Rev. B 1995, 52, R9815–R9818.

    Article  CAS  Google Scholar 

  34. Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y. F.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924.

    Article  CAS  Google Scholar 

  35. Solís-Fernández, P.; Paredes, J. I.; Cosío, A.; Martínez-Alonso, A.; Tascón, J. M. D. A comparison between physically and chemically driven etching in the oxidation of graphite surfaces. J. Colloid Interface Sci. 2010, 344, 451–459.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Professor H. D. Abruña from Cornell University for the critical review of this work. The authors are grateful for the financial support provided by the Ministerio de Ciencia, Innovación, Universidades of Spain (CTQ2017-84309-C2-1-R; RED2018-102412-T), Comunidad Autónoma de Madrid (TRANSNANOAVANSENS Program) and Generalitat Valenciana (APOSTD/2017/010). C. G.-S. also acknowledges the financial support from the Comunidad Autónoma de Madrid, Atracción de Talento Program (2017-T1/BIO-5435).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristina Gutiérrez-Sánchez or Encarnación Lorenzo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Sánchez, C., Martínez-Periñán, E., Busó-Rogero, C. et al. Carbon nanodots: a new precursor to achieve reactive nanoporous HOPG surfaces. Nano Res. 13, 3425–3432 (2020). https://doi.org/10.1007/s12274-020-3030-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3030-3

Keywords

Navigation