Skip to main content
Log in

Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single atom catalyst is of great importance for the oxygen reduction reaction (ORR). However, facile preparation of single atom catalyst without using well-designed precursors or labor-intensive acid leaching remains an urgent challenge. Herein, a simple pyrolysis of Fe3+-loaded mesoporous phenolic resin (mPF)-melamine precursor is used to prepare the single atom iron-anchored N-doped mesoporous graphitic carbon nanospheres (Fe/N-MGN). Investigation of the synthesis reveals the appropriate Fe-assisted catalysis effect and mPF template effect, which not only spurs the highly graphitic porous framework of Fe/N-MGN with plentiful pyridinic N/graphitic N, but also assures the dispersed single atom Fe anchoring without elaborated procedures. As a result, the as-synthesized Fe/N-MGN demonstrates high catalytic activity, good durability and excellent methanol tolerance for ORR. This work promises a facile method to regulate the graphitic carbon growth and single atom Fe loading for the highly efficient electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev.2018, 118, 2302–2312.

    Article  CAS  Google Scholar 

  2. Borghei, M.; Lehtonen, J.; Liu, L.; Rojas, O. J. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater.2018, 30, 1703691.

    Article  Google Scholar 

  3. Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc.2017, 139, 5890–5895.

    Article  CAS  Google Scholar 

  4. Qin, Q.; Jang, H.; Chen, L. L.; Nam, G.; Liu, X. E.; Cho, J. Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions. Adv. Energy Mater.2018, 8, 1801478.

    Article  Google Scholar 

  5. Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-Air batteries and water splitting. Adv. Mater.2018, 30, 1705431.

    Article  Google Scholar 

  6. Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA2018, 115, 12692–12697.

    Article  CAS  Google Scholar 

  7. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res.2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  8. Tan, H. B.; Tang, J.; Henzie, J.; Li, Y. Q.; Xu, X. T.; Chen, T.; Wang, Z. L.; Wang, J. Y.; Ide, Y.; Bando, Y. et al. Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron–nitrogen-doped porous carbon for oxygen reduction. ACS Nano2018, 12, 5674–5683.

    Article  CAS  Google Scholar 

  9. Jia, Y.; Jiang, K.; Wang, H. T.; Yao, X. D. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem2019, 5, 1371–1397.

    Article  CAS  Google Scholar 

  10. Patera, L. L.; Bianchini, F.; Africh, C.; Dri, C.; Soldano, G.; Mariscal, M. M.; Peressi, M.; Comelli, G. Real-time imaging of adatom-promoted graphene growth on nickel. Science2018, 359, 1243–1246.

    Article  CAS  Google Scholar 

  11. Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater.2019, 31, 1900509.

    Article  Google Scholar 

  12. Shi, R.; Tian, C. C.; Zhu, X.; Peng, C. Y.; Mei, B. B.; He, L.; Du, X. L.; Jiang, Z.; Chen, Y.; Dai, S. Achieving an exceptionally high loading of isolated cobalt single atoms on a porous carbon matrix for efficient visible-light-driven photocatalytic hydrogen production. Chem. Sci.2019, 10, 2585–2591.

    Article  CAS  Google Scholar 

  13. Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun.2019, 10, 3997.

    Article  Google Scholar 

  14. Deng, Y. J.; Chi, B.; Tian, X. L.; Cui, Z. M.; Liu, E. S.; Jia, Q. Y.; Fan, W. J.; Wang, G. G.; Dang, D.; Li, M. S. et al. g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/ fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. J. Mater. Chem. A2019, 7, 5020–5030.

    Article  CAS  Google Scholar 

  15. Luo, M. B.; Xiong, Y. Y.; Wu, H. Q.; Feng, X. F.; Li, J. Q.; Luo, F. The MOF+ technique: A significant synergic effect enables high performance chromate removal. Angew. Chem., Int. Ed.2017, 56, 16376–16379.

    Article  CAS  Google Scholar 

  16. Qiu, F.; Edison, J. R.; Preisler, Z.; Zhang, Y. F.; Li, G.; Pan, A. Z.; Hsu, C. H.; Mattox, T. M.; Ercius, P.; Song, C. Y. et al. Design rules for self-assembly of 2D nanocrystal/metal-organic framework superstructures. Angew. Chem., Int. Ed.2018, 57, 13172–13176.

    Article  CAS  Google Scholar 

  17. Li, J. C.; Xiao, F.; Zhong, H.; Li, T.; Xu, M. J.; Ma, L.; Cheng, M.; Liu, D.; Feng, S.; Shi, Q. R. et al. Secondary-atom-assisted synthesis of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction. ACS Catal.2019, 9, 5929–5934.

    Article  CAS  Google Scholar 

  18. Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal.2018, 8, 2824–2832.

    Article  CAS  Google Scholar 

  19. Wang, N.; Lu, B. Z.; Li, L. G.; Niu, W. H.; Tang, Z. H.; Kang, X. W.; Chen, S. W. Graphitic nitrogen is responsible for oxygen electroreduction on nitrogen-doped carbons in alkaline electrolytes: Insights from activity attenuation studies and theoretical calculations. ACS Catal.2018, 8, 6827–6836.

    Article  CAS  Google Scholar 

  20. An, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun.2018, 9, 1440.

    Article  Google Scholar 

  21. Tarutani, N.; Tokudome, Y.; Jobbágy, M.; Soler-Illia, G. J. A. A.; Tang, Q. Y.; Müller, M.; Takahashi, M. Highly ordered mesoporous hydroxide thin films through self-assembly of size-tailored nanobuilding blocks: A theoretical-experimental approach. Chem. Mater.2019, 31, 322–330.

    Article  CAS  Google Scholar 

  22. Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed.2018, 57, 8525–8529.

    Article  CAS  Google Scholar 

  23. Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc.2019, 141, 7073–7080.

    Article  CAS  Google Scholar 

  24. Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc.2018, 140, 11594–11598.

    Article  CAS  Google Scholar 

  25. Zhao, X. J.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M. Y.; Tian, G. Y.; Schmidt, J.; Thomas, A. Silica-templated covalent organic framework-derived Fe-N-doped mesoporous carbon as oxygen reduction electrocatalyst. Chem. Mater.2019, 31, 3274–3280.

    Article  CAS  Google Scholar 

  26. Huang, Z.; Pan, H. Y.; Yang, W. J.; Zhou, H. H.; Gao, N.; Fu, C. P.; Li, S. C.; Li, H. X.; Kuang, Y. F. In situ self-template synthesis of Fe-N-doped double-shelled hollow carbon microspheres for oxygen reduction reaction. ACS Nano2018, 12, 208–216.

    Article  CAS  Google Scholar 

  27. Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal.2015, 5, 6707–6712.

    Article  CAS  Google Scholar 

  28. Lu, Y.; Liang, J. N.; Deng, S. F.; He, Q. M.; Deng, S. Y.; Hu, Y. Z.; Wang, D. L. Hypercrosslinked polymers enabled micropore-dominant N, S Co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy2019, 65, 103993.

    Article  CAS  Google Scholar 

  29. Rownaghi, A. A.; Rezaei, F.; Stante, M.; Hedlund, J. Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Appl. Catal. B Environ.2012, 119–120, 56–61.

    Article  Google Scholar 

  30. Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal.2019, 2, 259–268.

    Article  CAS  Google Scholar 

  31. Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun.2019, 10, 1278.

    Article  Google Scholar 

  32. Khannanov, A.; Kiiamov, A.; Valimukhametova, A.; Tayurskii, D. A.; Börrnert, F.; Kaiser, U.; Eigler, S.; Vagizov, F. G.; Dimiev, A. M. γ-Iron phase stabilized at room temperature by thermally processed graphene oxide. J. Am. Chem. Soc.2018, 140, 9051–9055.

    Article  CAS  Google Scholar 

  33. Kim, H. W.; Park, H.; Roh, J. S.; Shin, J. E.; Lee, T. H.; Zhang, L.; Cho, Y. H.; Yoon, H. W.; Bukas, V. J.; Guo, J. H. et al. Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction. Chem. Mater.2019, 31, 3967–3973.

    Article  CAS  Google Scholar 

  34. Lv, Q.; Si, W. Y.; He, J. J.; Sun, L.; Zhang, C. F.; Wang, N.; Yang, Z.; Li, X. D.; Wang, X.; Deng, W. Q. et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun.2018, 9, 3376.

    Article  Google Scholar 

  35. Xia, D. S.; Yang, X.; Xie, L.; Wei, Y. P.; Jiang, W. L.; Dou, M.; Li, X. N.; Li, J.; Gan, L.; Kang, F. Y. Direct growth of carbon nanotubes doped with single atomic Fe-N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Funct. Mater.2019, 29, 1906174.

    Article  CAS  Google Scholar 

  36. Sakaushi, K.; Eckardt, M.; Lyalin, A.; Taketsugu, T.; Behm, R. J.; Uosaki, K. Microscopic electrode processes in the four-electron oxygen reduction on highly active carbon-based electrocatalysts. ACS Catal.2018, 8, 8162–8176.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 21675032 and 81861138040), the Fundamental Research Funds for the Central Universities and DHU Distinguished Young Professor Program. We appreciate the kind help from Dr. Li Wang in Center of Analysis and Measurement, Fudan University for preparation of complicated samples and elemental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Electronic Supplementary Material

12274_2020_2689_MOESM1_ESM.pdf

Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhu, L., Cui, X. et al. Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction. Nano Res. 13, 752–758 (2020). https://doi.org/10.1007/s12274-020-2689-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2689-9

Keywords

Navigation