Skip to main content
Log in

Macroscopic Ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Synthesis of metal nanostructures arrays with large amounts of small nano-gaps on a homogenous macroscale is of significant interest and importance in chemistry, biotechnology, physics, and nanotechnology because of their enhanced properties. However, the fabrication of uncovered nano-gaps with high-density and uniformity is rather difficult due to the complex and multiple synthetic steps. In this research, a facile and low-cost approach is demonstrated for the synthesis of high-density small nano-gaps (about 3.4 nm) between silver nanostructure array patterns (SNAPs) over a large area. Uniform nano-hole patterns were periodically generated over an entire substrate using nano-imprint lithography. Electrochemical reaction at the high over-potential produced multiple silver nanocrystals inside the nano-hole patterns, generating a high-density of small and uncovered nano-gaps. Finally, we fully demonstrate their application in the rapid detection of rhodamine 6G (R6G) molecules by surface-enhanced Raman scattering (SERS) spectroscopy with a very low detection limit (1 fM) as well as excellent signal uniformity (RSD < 8.0% ± 2.5%), indicating an extraordinary capability for single-molecule detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, T.; Wi, J. S.; Oh, A.; Na, H. K.; Lee, J.; Lee, K.; Lee, T. G.; Haam, S. Highlyrobust, uniform and ultra-sensitive surface-enhanced Raman scattering substrates for microRNA detection fabricated by using silver nanostructures grown in gold nanobowls. Nanoscale 2018, 10, 3680–3687.

    Article  CAS  Google Scholar 

  2. Wu, K. Y.; Li, T.; Schmidt, M. S.; Rindzevicius, T.; Boisen, A.; Ndoni, S. Goldnanoparticles sliding on recyclable nanohoodoos—Engineered for surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2018, 28, 1704818.

    Article  Google Scholar 

  3. Zhan, P. F.; Wen, T.; Wang, Z. G.; He, Y. B.; Shi, J.; Wang, T.; Liu, X. F.; Lu, G. W.; Ding, B. Q. DNAorigami directed assembly of gold bowtie nanoantennas for single-molecule surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2018, 57, 2846–2850.

    Article  CAS  Google Scholar 

  4. Si, S. R.; Liang, W. K.; Sun, Y. H.; Huang, J.; Ma, W. L.; Liang, Z. Q.; Bao, Q. L.; Jiang, L. Facilefabrication of high-density sub-1-nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv. Funct. Mater. 2016, 26, 8137–8145.

    Article  CAS  Google Scholar 

  5. Kurouski, D.; Mattei, M.; Van Duyne, R. P. Probingredox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett. 2015, 15, 7956–7962.

    Article  CAS  Google Scholar 

  6. Park, K. D.; Muller, E. A.; Kravtsov, V.; Sass, P. M.; Dreyer, J.; Atkin, J. M.; Raschke, M. B. Variable-temperature tip-enhanced Raman spectroscopy of single-molecule fluctuations and dynamics. Nano Lett. 2016, 16, 479–487.

    Article  CAS  Google Scholar 

  7. Lee, T.; Jung, S.; Kwon, S.; Kim, W.; Park, J.; Lim, H.; Lee, J. Formationof interstitial hot-spots using the reduced gap-size between plasmonic microbeads pattern for surface-enhanced Raman scattering analysis. Sensors 2019, 19, 1046.

    Article  CAS  Google Scholar 

  8. Liu, Z.; Yang, Z. B; Peng, B.; Cao, C.; Zhang, C.; You, H. J.; Xiong, Q. H.; Li, Z. Y.; Fang, J. X. Highlysensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins. Adv. Mater. 2014, 26, 2431–2439.

    Article  CAS  Google Scholar 

  9. Thai, T.; Zheng, Y. H.; Ng, S. H.; Mudie, S.; Altissimo, M.; Bach, U. Self-assembly of vertically aligned gold nanorod arrays on patterned substrates. Angew. Chem., Int. Ed. 2012, 51, 8732–8735.

    Article  CAS  Google Scholar 

  10. Li, P. H.; Li, Y.; Zhou, Z. K.; Tang, S. Y.; Yu, X. F.; Xiao, S.; Wu, Z. Z.; Xiao, Q. L.; Zhao, Y. T.; Wang, H. Y. et al. Evaporativeself-assembly of gold nanorods into macroscopic 3D plasmonic superlattice arrays. Adv. Mater. 2016, 28, 2511–2517.

    Article  CAS  Google Scholar 

  11. Shin, Y.; Song, J.; Kim, D.; Kang, T. Facilepreparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control. Adv. Mater. 2015, 27, 4344–4350.

    Article  CAS  Google Scholar 

  12. Lin, Q. Y.; Li, Z. Y.; Brown, K. A.; O’ Brien, M. N.; Ross, M. B.; Zhou, Y.; Butun, S.; Chen, P. C.; Schatz, G. C.; Dravid, V. P. et al. Strongcoupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Lett. 2015, 15, 4699–4703.

    Article  CAS  Google Scholar 

  13. Lim, H.; Ryu, J.; Kim, G.; Choi, K. B.; Lee, S.; Lee, J. Nanoimprintlithography with a focused laser beam for the fabrication of nanopatterned microchannel molds. Lab Chip 2013, 13, 3188–3191.

    Article  CAS  Google Scholar 

  14. Ahn, J.; Kwon, S.; Jung, S.; Lee, W. S.; Jeong, J.; Lim, H.; Shin, Y. B.; Lee, J. Fabricationof pyrrole-based electrochemical biosensor platform using nanoimprint lithography. Adv. Mater. Interfaces 2018, 5, 1701593.

    Article  Google Scholar 

  15. Yoon, J. K.; Nam, S.; Shim, H. C.; Park, K.; Yoon, T.; Park, H. S.; Hyun, S. Highly-stable Li4Ti5O12 anodes obtained by atomic-layer-deposited Al2O3. Materials 2018, 11, 803.

  16. Zhang, X. Y.; Zhao, J.; Whitney, A. V.; Elam, J. W.; Van Duyne, R. P. Ultrastablesubstrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 2006, 128, 10304–10309.

    Article  CAS  Google Scholar 

  17. Lee, J.; Zhang, Q. P.; Park, S.; Choe, A.; Fan, Z. Y.; Ko, H. Particle-film plasmons on periodic silver film over nanosphere (AgFON): A hybrid plasmonic nanoarchitecture for surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 2016, 8, 634–642.

    Article  CAS  Google Scholar 

  18. Zhu, C. H.; Meng, G. W.; Zheng, P.; Huang, Q.; Li, Z. B.; Hu, X. Y.; Wang, X. J.; Huang, Z. L.; Li, F. D.; Wu, N. Q. Ahierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater. 2016, 28, 4871–4876.

    Article  CAS  Google Scholar 

  19. Li, X. L.; Zhang, Y. Z.; Shen, Z. X.; Fan, H. J. Highlyordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced Raman scattering. Small 2012, 8, 2548–2554.

    Article  CAS  Google Scholar 

  20. Li, X. M.; Bi, M. H.; Cui, L.; Zhou, Y. Z.; Du, X. W.; Qiao, S. Z.; Yang, J. 3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability. Adv. Funct. Mater. 2017, 27, 1605703.

    Article  Google Scholar 

  21. Zhang, L.; Guan, C. R.; Wang, Y.; Liao, J. H. Highlyeffective and uniform SERS substrates fabricated by etching multi-layered gold nanoparticle arrays. Nanoscale 2016, 8, 5928–5937.

    Article  CAS  Google Scholar 

  22. Kim, Y.; Kim, G.; Lee, J. Fabricationof a conductive nanoscale electrode for functional devices using nanoimprint lithography with printable metallic nanoink. Microelectron. Eng. 2010, 87, 839–842.

    Article  CAS  Google Scholar 

  23. Bang, D.; Chang, Y. W.; Park, J.; Lee, T.; Park, J.; Yeo, J. S.; Kim, E. K.; Yoo, K. H.; Huh, Y. M.; Haam, S. One-step electrochemical fabrication of vertically self-organized silver nanograss. J. Mater. Chem. A 2013, 1, 4851–4857.

    Article  CAS  Google Scholar 

  24. Lee, T.; Bang, D.; Chang, Y. W.; Choi, Y.; Park, K. Y.; Oh, A.; Han, S.; Kim, S. H.; Lee, K.; Suh, J. S. et al. Cancertheranosis using mono-disperse, mesoporous gold nanoparticles obtained via a robust, high-yield synthetic methodology. RSC Adv. 2016, 6, 13554–13561.

    Article  CAS  Google Scholar 

  25. Liu, Y. J.; Pedireddy, S.; Lee, Y. H.; Hegde, R. S.; Tjiu, W. W.; Cui, Y.; Ling, X. Y. Precisionsynthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges. Small 2014, 10, 4940–4950.

    Article  CAS  Google Scholar 

  26. Park, J.; Bang, D.; Jang, K.; Kim, E.; Haam, S.; Na, S. Multimodallabel-free detection and discrimination for small molecules using a nanoporous resonator. Nat. Commun. 2014, 5, 3456.

  27. Sivasubramanian, R.; Sangaranarayanan, M. V. Electrodepositionof silver nanostructures: From polygons to dendrites. CrystEngComm 2013, 15, 2052–2056.

    Article  CAS  Google Scholar 

  28. Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surfaceenhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the BioNano Health-Guard Research Center funded by the Ministry of Science and ICT & Future Planning (MSIP) of Korea as Global Frontier Project (No. H-GUARD_2013M3A6B2078) and the Nano-Material Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (No. 2017M3A7B4041754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Jong Lee.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Kwon, S., Jung, S. et al. Macroscopic Ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates. Nano Res. 12, 2554–2558 (2019). https://doi.org/10.1007/s12274-019-2484-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2484-7

Keywords

Navigation