Skip to main content
Log in

Function-regeneration of non-porous hydrolyzed-MOF-derived materials

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A facile synthetic strategy based on a water-based process is developed for the preparation of metal-organic framework (MOF)-derived materials by revisiting the hydrolyzed non-porous metal-organic frameworks (h-MOF). The poor water stability of MOF has been recognized as key limitations for its commercialization and large-scale applications because the hydrolysis resulted in the complete loss of their functionalities. However, we found that the negative effect of hydrolysis on MOF can be nullified during the heat treatment. As similar to the intact MOF, h-MOF can be used as a precursor for the preparation of MOF-derived materials from porous MOF-derived carbons (MDCs) to MDC@ZnO composites. The property of h-MOF-derived materials is almost equivalent to that of MOF-derived materials. In addition, h-MOF turned the weakness of water instability to the strength of facile water-based process for hybridization. With the demonstration of the hybrid composite between h-MDC@ZnO and reduced graphene oxide (rGO) as a prototype example, it exhibited superior electrochemical performance when evaluated as an electrode material for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821.

    Article  Google Scholar 

  2. Kitagawa, S. Future porous materials. Acc. Chem. Res. 2017, 50, 514–516.

    Article  Google Scholar 

  3. Lee, K. J.; Lee, J. H.; Jeoung, S.; Moon, H. R. Transformation of metal–organic frameworks/coordination polymers into functional nanostructured materials: Experimental approaches based on mechanistic insights. Acc. Chem. Res. 2017, 50, 2684–2692.

    Article  Google Scholar 

  4. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

    Article  Google Scholar 

  5. Chen, K.; Sun, Z. H; Fang, R. P; Shi, Y.; Cheng, H. M.; Li, F. Metalorganic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707592.

    Article  Google Scholar 

  6. Krause, S.; Bon, V.; Senkovska, I.; Többens, D. M.; Wallacher, D.; Pillai, R. S.; Maurin, G.; Kaskel, S. The effect of crystallite size on pressure amplification in switchable porous solids. Nat. Commun. 2018, 9, 1573.

  7. Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

    Article  Google Scholar 

  8. Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302–11303.

    Article  Google Scholar 

  9. Liu, B.; Shioyama, H.; Jiang, H. L.; Zhang, X. B.; Xu, Q. Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 2010, 48, 456–463.

    Article  Google Scholar 

  10. Kim, T. K.; Lee, K. J.; Cheon, J. Y.; Lee, J. H.; Joo, S. H.; Moon, H. R. Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal–organic frameworks. J. Am. Chem. Soc. 2013, 135, 8940–8946.

    Article  Google Scholar 

  11. Zhou, H. C. J.; Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

    Article  Google Scholar 

  12. Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. D. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.

    Article  Google Scholar 

  13. Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

    Article  Google Scholar 

  14. Jiao, L.; Wang, Y.; Jiang, H. L. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

    Article  Google Scholar 

  15. Jiao, L; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

    Article  Google Scholar 

  16. Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Metal–organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011, 23, 249–267.

    Article  Google Scholar 

  17. Yang, S. J.; Cho, J. H.; Lee, K.; Kim, T.; Park, C. R. Concentration-driven evolution of crystal structure, pore characteristics, and hydrogen storage capacity of metal organic framework-5s: Experimental and computational studies. Chem. Mater. 2010, 22, 6138–6145.

    Article  Google Scholar 

  18. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

    Article  Google Scholar 

  19. Ni, Z.; Masel, R. I. Rapid production of metal−organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395.

    Article  Google Scholar 

  20. Ming, Y.; Kumar, N.; Siegel, D. J. Water adsorption and insertion in MOF-5. ACS Omega 2017, 2, 4921–4928.

    Article  Google Scholar 

  21. Kang, J. H.; Kim, T.; Choi, J.; Park, J.; Kim, Y. S.; Chang, M. S.; Jung, H.; Park, K. T.; Yang, S. J.; Park, C. R. Hidden second oxidation step of hummers method. Chem. Mater. 2016, 28, 756–764.

    Article  Google Scholar 

  22. Kim, Y. S.; Kang, J. H.; Kim, T.; Jung, Y.; Lee, K.; Oh, J. Y.; Pank, J.; Park, C. R. Easy preparation of readily self-assembled high-performance graphene oxide fibers. Chem. Mater. 2014, 26, 5549–5555.

    Article  Google Scholar 

  23. Oh, J. Y.; Yang, S. J.; Park, J. Y.; Kim, T.; Lee, K.; Kim, Y. S.; Han, H. N.; Park, C. R. Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties. Nano Lett. 2015, 15, 190–197.

    Article  Google Scholar 

  24. Oh, J. Y.; Kim, Y. S.; Jung, Y.; Yang, S. J.; Park, C. R. Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 2016, 10, 2184–2192.

    Article  Google Scholar 

  25. Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 2014, 114, 10575–10612.

    Article  Google Scholar 

  26. Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Zhan, W. W.; Pachfule, P.; Tsumori, N.; Xu, Q. Metal–organic framework templated porous carbon-metal oxide/ reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater. 2018, 8, 1701416.

    Article  Google Scholar 

  27. Taylor, J. M.; Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H. Enhancing water stability of metal–organic frameworks via phosphonate monoester linkers. J. Am. Chem. Soc. 2012, 134, 14338–14340.

    Article  Google Scholar 

  28. Zhang, W.; Hu, Y. L.; Ge, J.; Jiang, H. L.; Yu, S. H. A facile and general coating approach to moisture/water-resistant metal–organic frameworks with intact porosity. J. Am. Chem. Soc. 2014, 136, 16978–16981.

    Article  Google Scholar 

  29. Xu, G. Y.; Nie, P.; Dou, H.; Ding, B.; Li, L. Y.; Zhang, X. G. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191–209.

    Article  Google Scholar 

  30. Greathouse, J. A.; Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 2006, 128, 10678–10679.

    Article  Google Scholar 

  31. Ming, Y.; Purewal, J.; Yang, J.; Xu, C. C.; Soltis, R.; Warner, J.; Veenstra, M.; Gaab, M.; Müller, U.; Siegel, D. J. Kinetic stability of MOF-5 in humid environments: Impact of powder densification, humidity level, and exposure time. Langmuir 2015, 31, 4988–4995.

    Article  Google Scholar 

  32. Rodríguez, N. A.; Parra, R.; Grela, M. A. Structural characterization, optical properties and photocatalytic activity of MOF-5 and its hydrolysis products: Implications on their excitation mechanism. RSC Adv. 2015, 5, 73112–73118.

    Article  Google Scholar 

  33. Yang, S. J.; Park, C. R. Preparation of highly moisture-resistant blackcolored metal organic frameworks. Adv. Mater. 2012, 24, 4010–4013.

    Article  Google Scholar 

  34. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557.

    Article  Google Scholar 

  35. Greer, H. F.; Liu, Y. H.; Greenaway, A.; Wright, P. A.; Zhou, W. Z. Synthesis and formation mechanism of textured MOF-5. Cryst. Growth Des. 2016, 16, 2104–2111.

    Article  Google Scholar 

  36. Huang, L. M.; Wang, H. T.; Chen, J. X.; Wang, Z. B.; Sun, J. Y.; Zhao, D. Y.; Yan, Y. S. Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Micropor. Mesopor. Mater. 2003, 58, 105–114.

    Article  Google Scholar 

  37. Hausdorf, S.; Wagler, J.; Moβig, R.; Mertens, F. O. R. L. Proton and water activity-controlled structure formation in zinc carboxylate-based metal organic frameworks. J. Phys. Chem. A 2008, 112, 7567–7576.

    Article  Google Scholar 

  38. Thirumurugan, A.; Rao, C. N. R. 1,2-, 1,3- and 1,4-benzenedicarboxylates of Cd and Zn of different dimensionalities: Process of formation of the three-dimensional structure. J. Mater. Chem. 2015, 15, 3852–3858.

    Article  Google Scholar 

  39. Müller, M.; Turner, S.; Lebedev, O. I.; Wang, Y. M.; Van Tendeloo, G.; Fischer, R. A. Au@MOF-5 and Au/MOx@MOF-5 (M = Zn, Ti. x = 1, 2): Preparation and microstructural characterisation. Eur. J. Inorg. Chem. 2011, 2011, 1876–1887.

    Article  Google Scholar 

  40. Chen, R. Z.; Hu, Y.; Shen, Z.; Chen, Y. L.; He, X.; Zhang, X. W.; Zhang, Y. Controlled synthesis of carbon nanofibers anchored with ZnxCo3–xO4 nanocubes as binder-free anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2591–2599.

    Article  Google Scholar 

  41. Han, S.; Lah, M. S. Simple and efficient regeneration of MOF-5 and HKUST-1 via acid–base treatment. Cryst. Growth Des. 2015, 15, 5568–5572.

    Article  Google Scholar 

  42. Tan, K.; Nijem, N.; Canepa, P.; Gong, Q. H.; Li, J.; Thonhauser, T.; Chabal, Y. J. Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chem. Mater. 2012, 24, 3153–3167.

    Article  Google Scholar 

  43. Du, J. H.; Pei, S. F.; Ma, L. P.; Cheng, H. M. 25th anniversary article: Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv. Mater. 2014, 26, 1958–1991.

    Article  Google Scholar 

  44. Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li–S batteries. Adv. Funct. Mater. 2018, 28, 1707411.

    Article  Google Scholar 

  45. Shan, X. Y.; Wang, Y. Z.; Wang, D. W.; Li, F.; Cheng, H. M. Armoring graphene cathodes for high-rate and long-life lithium ion supercapacitors. Adv. Energy Mater. 2016, 6, 1502064.

    Article  Google Scholar 

  46. Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

    Article  Google Scholar 

  47. Yang, S. J.; Kim, T.; Im, J. H.; Kim, Y. S.; Lee, K.; Jung, H.; Park, C. R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 2012, 24, 464–470.

    Article  Google Scholar 

  48. Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.

    Article  Google Scholar 

  49. Fletcher, E. A. Solarthermal and solar quasi-electrolytic processing and separations: Zinc from zinc oxide as an example. Ind. Eng. Chem. Res. 1999, 38, 2275–2282.

    Article  Google Scholar 

  50. Wu, M. C.; Lee, C. S. Synthesis and thermal decomposition of Zn(tda)H2O [tda = S(CH2COO)2 2−]. Inorg. Chem. 2006, 45, 9634–9636.

    Article  Google Scholar 

  51. Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

    Article  Google Scholar 

  52. Yang, S. J.; Nam, S.; Kim, T.; Im, J. H.; Jung, H.; Kang, J. H.; Wi, S.; Park, B.; Park, C. R. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J. Am. Chem. Soc. 2013, 135, 7394–7397.

    Article  Google Scholar 

  53. Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

    Article  Google Scholar 

  54. Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/ graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.

    Article  Google Scholar 

  55. Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 2010, 22, 3723–3728.

    Article  Google Scholar 

  56. Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

    Article  Google Scholar 

  57. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  58. Li, H.; Balaya, P.; Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 2004, 151, A1878-A1885.

  59. Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.

    Article  Google Scholar 

  60. Sakaushi, K.; Lyalin, A.; Tominaka, S.; Taketsugu, T.; Uosaki, K. Two-dimensional corrugated porous carbon-, nitrogen-framework/metal heterojunction for efficient multielectron transfer processes with controlled kinetics. ACS Nano 2017, 11, 1770–1779.

    Article  Google Scholar 

  61. Wong, E. M.; Bonevich, J. E.; Searson, P. C. Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions. J. Phys. Chem. B 1998, 102, 7770–7775.

    Article  Google Scholar 

  62. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

    Article  Google Scholar 

  63. Feng, Y.; Zhang, Y. L.; Song, X. Y.; Wei, Y. Z.; Battaglia, V. S. Facile hydrothermal fabrication of ZnO–graphene hybrid anode materials with excellent lithium storage properties. Sustainable Energy Fuels 2017, 1, 767–779.

    Article  Google Scholar 

  64. Yu, S. H.; Lee, D. J.; Park, M.; Kwon, S. G.; Lee, H. S.; Jin, A. H.; Lee, K. S.; Lee, J. E.; Oh, M. H.; Kang, K. et al. Hybrid cellular nanosheets for high-performance lithium-ion battery anodes. J. Am. Chem. Soc. 2015, 137, 11954–11961.

    Article  Google Scholar 

  65. Sun, X.; Zhou, C. G.; Xie, M.; Sun, H. T.; Hu, T.; Lu, F. Y.; Scott, S. M.; George, S. M.; Lian, J. Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity. J. Mater. Chem. A 2014, 2, 7319–7326.

    Article  Google Scholar 

  66. Kushima, A.; Liu, X. H.; Zhu, G.; Wang, Z. L.; Huang, J. Y.; Li, J. Leapfrog cracking and nanoamorphization of ZnO nanowires durin. in situ electrochemical lithiation. Nano Lett. 2011, 11, 4535–4541.

    Article  Google Scholar 

  67. Liu, J. P.; Li, Y. Y.; Huang, X. T.; Li, G. Y.; Li, Z. K. Layered double hydroxide Nano‐ and microstructures grown directly on metal substrates and their calcined products for application as Li‐ion battery electrodes. Adv. Funct. Mater. 2008, 18, 1448–1458.

    Article  Google Scholar 

  68. Belliard, F.; Irvine, J. T. S. Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery. J. Power Sources 2001, 97–98, 219–222.

    Article  Google Scholar 

  69. Zhang, C. Q.; Tu, J. P.; Yuan, Y. F.; Huang, X. H.; Chen, X. T.; Mao, F. Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J. Electrochem. Soc. 2007, 154, A65–A69.

    Article  Google Scholar 

  70. Ahmad, M.; Shi, Y. Y.; Nisar, A.; Sun, H. Y.; Shen, W. C.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723–7729.

    Article  Google Scholar 

  71. Nadimpalli, S. P. V.; Sethuraman, V. A.; Dalavi, S.; Lucht, B.; Chon, M. J.; Shenoy, V. B.; Guduru, P. R. Quantifying capacity loss due to solidelectrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries. J. Power Sources 2012, 215, 145–151.

    Article  Google Scholar 

  72. An, S. J.; Li, J. L.; Du, Z. J.; Daniel, C.; Wood III, D. L. Fast formation cycling for lithium ion batteries. J. Power Sources 2017, 342, 846–852.

    Article  Google Scholar 

  73. Xia, F.; Kwon, S.; Lee, W. W.; Liu, Z. M.; Kim, S.; Song, T.; Choi, K. J.; Paik, U.; Park, W. I. Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batteries. Nano Lett. 2015, 15, 6658–6664.

    Article  Google Scholar 

  74. Su, Q. M.; Dong, Z. M.; Zhang, J.; Du, G. H.; Xu, B. S. Visualizing the electrochemical reaction of ZnO nanoparticles with lithium b. in situ TEM: Two reaction modes are revealed. Nanotechnology 2013, 24, 255705

    Article  Google Scholar 

  75. Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 2003, 13, 621–625.

    Article  Google Scholar 

  76. Chen, C. C.; Maier, J. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes. Nat. Energy 2018, 3, 102–108.

    Article  Google Scholar 

  77. Bekaert, E.; Balaya, P.; Murugavel, S.; Maier, J.; Ménétrier, M. 6Li MAS NMR investigation of electrochemical lithiation of RuO2: Evidence for an interfacial storage mechanism. Chem. Mater. 2009, 21, 856–861.

    Article  Google Scholar 

  78. Kim, J. H.; Byeon, M.; Jeong, Y. C.; Oh, J. Y.; Jung, Y.; Fechler, N.; Yang, S. J.; Park, C. R. Morphochemical imprinting of melamine cyanurate mesocrystals in glucose-derived carbon for high performance lithium ion batteries. J. Mater. Chem. A 2017, 5, 20635–20642.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Rae Park or Seung Jae Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y.C., Seo, J.W., Kim, J.H. et al. Function-regeneration of non-porous hydrolyzed-MOF-derived materials. Nano Res. 12, 1921–1930 (2019). https://doi.org/10.1007/s12274-019-2459-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2459-8

Keywords

Navigation