Skip to main content
Log in

Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Inorganic perovskite CsPbBr3 quantum dots (QDs) are potential nanoscale photosensitizers; moreover, two-dimensional (2-D) molybdenum disulfide (MoS2) has been intensively studied for application in the active layers of optoelectronic devices. In this study, heterostructures of 2D-monolayered MoS2 with zero-dimensional functionalized CsPbBr3 QDs were prepared, and their nanoscale optical characteristics were investigated. The effect of n-type doping on the MoS2 monolayer after hybridization with perovskite CsPbBr3 QDs was observed using laser confocal microscope photoluminescence (PL) and Raman spectra. Field-effect transistors (FETs) using MoS2 and the MoS2–CsPbBr3 QDs hybrid were also fabricated, and their electrical and photoresponsive characteristics were investigated in terms of the charge transfer effect. For the MoS2–CsPbBr3 QDs-based FETs, the field effect mobility and photoresponsivity upon light irradiation were enhanced by ~ 4 times and a dramatic ~ 17 times, respectively, compared to the FET prepared without the perovskite QDs and without light irradiation. It is noteworthy that the photoresponsivity of the MoS2–CsPbBr3 QDs-based FETs significantly increased with increasing light power, which is completely contrary to the behavior observed in previous studies of MoS2-based FETs. The increased mobility and significant enhancement of the photoresponsivity can be attributed to the n-type doping effect and efficient energy transfer from CsPbBr3 QDs to MoS2. The results indicate that the optoelectronic characteristics of MoS2-based FETs can be significantly improved through hybridization with photosensitive perovskite CsPbBr3 QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Morozov, S. V.; Mohinddin, T. M. G.; Ponomarenko, L. A.; Elias, D. C.; Yang, R.; Barbolina, I. I.; Blake, P.; Booth, T. J.; Jiang, D. et al. Electronic properties of graphene. Phys. Status Solidi B 2007, 244, 4106–4111.

    Article  CAS  Google Scholar 

  2. Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.

    Article  CAS  Google Scholar 

  3. Tong, X.; Ashalley, E.; Lin, F.; Li, H. D.; Wang, Z. M. Advances in MoS2- based field effect transistors (FETs). Nano-Micro Lett. 2015, 7, 203–218.

    Article  CAS  Google Scholar 

  4. Dhakal, K. P.; Duong, D. L.; Lee, J.; Nam, H.; Kim, M.; Kan, M.; Lee, Y. H.; Kim, J. Confocal absorption spectral imaging of MoS2: Optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 2014, 6, 13028–13035.

    Article  CAS  Google Scholar 

  5. Lui, C. H.; Ye, Z. P.; Ji, C.; Chiu, K. C.; Chou, C. T.; Andersen, T. I.; Means-Shively, C.; Anderson, H.; Wu, J. M.; Kidd, T. et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 2015, 91, 165403.

    Article  CAS  Google Scholar 

  6. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    Article  CAS  Google Scholar 

  7. Wei, W.; Dai, Y.; Sun, Q. L.; Yin, N.; Han, S. H.; Huang, B. B.; Jacob, T. Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures. Phys. Chem. Chem. Phys. 2015, 17, 29380–29386.

    Article  CAS  Google Scholar 

  8. Paul, A. K.; Kuiri, M.; Saha, D.; Chakraborty, B.; Mahapatra, S.; Sood, A. K.; Das, A. Photo-tunable transfer characteristics in MoTe2–MoS2 vertical heterostructure. npj 2D Mater. Appl. 2017, 1, 17.

    Article  Google Scholar 

  9. Fivaz R.; Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 1967, 163, 743.

    Article  CAS  Google Scholar 

  10. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  11. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, I. V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147.

    Article  CAS  Google Scholar 

  12. Liu, H.; Peide, D. Y. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Elec. Dev. Lett. 2012, 33, 546–548.

    Article  CAS  Google Scholar 

  13. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  CAS  Google Scholar 

  14. Polavarapu, L.; Nickel, B.; Feldmann, J.; Urban, A. S. Advances in quantumconfined perovskite nanocrystals for optoelectronics. Adv. Energy Mater. 2017, 7, 1700267.

    Article  CAS  Google Scholar 

  15. Huang, C. Y.; Zou, C.; Mao, C. Y.; Corp, K. L.; Yao, Y. C.; Lee, Y. J.; Schlenker, C. W.; Jen, A. K. Y.; Lin, L. Y. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics 2017, 4, 2281–2289.

    Article  CAS  Google Scholar 

  16. Ha, S. T.; Su, R.; Xing, J.; Zhang, Q.; Xiong, Q. H. Metal halide perovskite nanomaterials: Synthesis and applications. Chem. Sci. 2017, 8, 2522–2536.

    Article  CAS  Google Scholar 

  17. Du, X. F.; Wu, G.; Cheng, J.; Dang, H.; Ma, K. Z.; Zhang, Y. W.; Tan, P. F.; Chen, S. High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes. RSC Adv. 2017, 7, 10391–10396.

    Article  CAS  Google Scholar 

  18. Li, H.; Zheng, X.; Liu, Y.; Zhang, Z. P; Jiang, T. Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure. Nanoscale 2018, 10, 1650–1659.

    Article  CAS  Google Scholar 

  19. Liu, Y.; Li, H.; Zheng, X.; Cheng, X. G.; Jiang, T. Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots. Opt. Mater. Express 2017, 7, 1327–1334.

    Article  CAS  Google Scholar 

  20. Chen, C. Y.; Qiao, H.; Lin, S. H.; Luk, C. M.; Liu, Y.; Xu, Z. Q.; Song, J. C.; Xue, Y. Z.; Li, D. L.; Yuan, J. et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 2015, 5, 11830.

    Article  Google Scholar 

  21. Kang, D. H.; Pae, S. R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J. W.; Yu, J. S.; Lee, S.; Shin, B.; Park, J. H. An ultrahigh-performance photodetector based on a perovskite–transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799–7806.

    Article  CAS  Google Scholar 

  22. Song, X. F.; Liu, X. H.; Yu, D. J.; Huo, C. X.; Ji, J. P.; Li, X. M.; Zhang, S. L.; Zou, Y. S.; Zhu, G. Y.; Wang, Y. J. et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809.

    Article  CAS  Google Scholar 

  23. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  24. Liu, M.; Zhong, G. H.; Yin, Y. M.; Miao, J. S.; Li, K.; Wang, C. Q.; Xu, X. R.; Shen, C.; Meng, H. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 2017, 4, 1700335.

    Article  CAS  Google Scholar 

  25. Guria, A. K.; Dutta, S. K.; Adhikari, S. D.; Pradhan, N. Doping Mn2+ in lead halide perovskite nanocrystals: Successes and challenges. ACS Energy Lett. 2017, 2, 1014–1021.

    Article  CAS  Google Scholar 

  26. Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.

    Article  CAS  Google Scholar 

  27. Liu, K.; Yan, Q. M.; Chen, M.; Fan, W.; Sun, Y. H.; Suh, J.; Fu, D. Y.; Lee, S.; Zhou, J.; Tongay, S. et al. Elastic properties of chemical-vapordeposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 2014, 14, 5097–5103.

    Article  CAS  Google Scholar 

  28. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    Article  CAS  Google Scholar 

  29. Ryu, M. Y.; Jang, H. K.; Lee, K. J.; Piao, M. X.; Ko, S. P.; Shin, M.; Huh, J.; Kim, G. T. Triethanolamine doped multilayer MoS2 field effect transistors. Phys. Chem. Chem. Phys. 2017, 19, 13133–13139.

    Article  CAS  Google Scholar 

  30. Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

    Article  CAS  Google Scholar 

  31. Andleeb, S.; Singh, A. K.; Eom, J. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid. Sci. Technol. Adv. Mater. 2015, 16, 035009.

    Article  CAS  Google Scholar 

  32. Lin, Z. Y.; Zhao, Y. D.; Zhou, C. J.; Zhong, R.; Wang, X. S.; Tsang, Y. H.; Chai, Y. Controllable growth of large–size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 2015, 5, 18596.

    Article  CAS  Google Scholar 

  33. Bhanu, U.; Islam, M. R.; Tetard, L.; Khondaker, S. I. Photoluminescence quenching in gold-MoS2 hybrid nanoflakes. Sci. Rep. 2014, 4, 5575.

    Article  CAS  Google Scholar 

  34. Cho, E. H.; Song, W. G.; Park, C. J.; Kim, J.; Kim, S.; Joo, J. Enhancement of photoresponsive electrical characteristics of multilayer MoS2 transistors using rubrene patches. Nano Res. 2015, 8, 790–800.

    Article  CAS  Google Scholar 

  35. Yi, Y.; Wu, C. M.; Liu, H. C.; Zeng, J. L.; He, H. T.; Wang, J. N. A study of lateral Schottky contacts in WSe2 and MoS2 field effect transistors using scanning photocurrent microscopy. Nanoscale 2015, 7, 15711–15718.

    Article  CAS  Google Scholar 

  36. Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653–8661.

    Article  CAS  Google Scholar 

  37. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation (NRF) of Korea funded by the Korean government (No. NRF- 2018R1A2B2006369). One of the authors, K. S. L., also acknowledges the financial support by the Mid-Career Researcher Program through the NRF funded by MEST (No. 2016R1A2B4008473).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwang-Sup Lee or Jinsoo Joo.

Electronic supplementary material

12274_2018_2230_MOESM1_ESM.pdf

Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, T., Shin, H.S., Seo, C. et al. Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots. Nano Res. 12, 405–412 (2019). https://doi.org/10.1007/s12274-018-2230-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2230-6

Keywords

Navigation