Skip to main content
Log in

Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may deviate from the ideal model construction under reaction conditions, a host–guest strategy to synthesize thermally stable 1.0 nm monodispersed Ru clusters by the pyrolysis of MIL-101 hosts is reported here to verify the hypothesis. For ammonia decomposition, the activity of the Ru clusters is 25 times higher than that of commercial Ru/active carbon (AC) at full-conversion temperature, while for ammonia synthesis, the activity of the Ru clusters is 500 times as high as that of promoted Ru NPs counterpart. The catalyst also maintains its activities for 40 h without any increase in the size. This model can be used to develop a host–guest strategy for designing thermally stable sub-nm clusters to atomic–efficiently catalyze reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spencer, N. D.; Schoonmaker, R. C.; Somorjai, G. A. Structure sensitivity in the iron single-crystal catalysed synthesis of ammonia. Nature 1981, 294, 643–644.

    Article  Google Scholar 

  2. Rodriguez, J. A.; Goodman, D. W. High-pressure catalytic reactions over single-crystal metal surfaces. Surf. Sci. Rep. 1991, 14, 1–107.

    Article  Google Scholar 

  3. Liu, J. X.; Su, H. Y.; Sun, D. P.; Zhang, B. Y.; Li, W. X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC. J. Am. Chem. Soc. 2013, 135, 16284–16287.

    Article  Google Scholar 

  4. Li, W. Z.; Liu, J. X.; Gu, J.; Zhou, W.; Yao, S. Y.; Si, R.; Guo, Y.; Su, H. Y.; Yan, C. H.; Li, W. X. et al. Chemical insights into the design and development of face-centered cubic ruthenium catalysts for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 2017, 139, 2267–2276.

    Article  Google Scholar 

  5. Marks, L. D. Experimental studies of small particle structures. Rep. Prog. Phys. 1994, 57, 603–649.

    Article  Google Scholar 

  6. Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555–558.

    Article  Google Scholar 

  7. Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 1999, 83, 1814–1817.

    Article  Google Scholar 

  8. Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon- Mucherie, S.; Redfern, P. C.; Mehmood, F. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213–216.

    Article  Google Scholar 

  9. Oliver-Meseguer, J.; Cabrero-Antonino, J. R.; Domínguez, I.; Leyva-Pérez, A.; Corma, A. Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 2012, 338, 1452–1455.

    Article  Google Scholar 

  10. Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

    Article  Google Scholar 

  11. Tyo, E. C.; Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 2015, 10, 577–588.

    Article  Google Scholar 

  12. Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Metalorganic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011, 23, 249–267.

    Article  Google Scholar 

  13. Tao, F.; Dag, S.; Wang, L. W.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 2010, 327, 850–853.

    Article  Google Scholar 

  14. Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934.

    Article  Google Scholar 

  15. Jacobsen, C. J. H.; Dahl, S.; Hansen, P. L.; Tornqvist, E.; Jensen, L.; Topsøe, H.; Prip, D. V.; Møenshaug, P. B.; Chorkendorff, I. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J. Mol. Catal. A: Chem. 2000, 163, 19–26.

    Article  Google Scholar 

  16. Kalamaras, C. M.; Americanou, S.; Efstathiou, A. M. “Redox” vs. “associative formate with–OH group regeneration” WGS reaction mechanism on Pt/CeO2: Effect of platinum particle size. J. Catal. 2011, 279, 287–300.

    Article  Google Scholar 

  17. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2420.

    Article  Google Scholar 

  18. Goel, S.; Wu, Z. J.; Zones, S. I.; Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 2012, 134, 17688–17695.

    Article  Google Scholar 

  19. Liu, Y. L.; Tang, Z. Y. Multifunctional Nanoparticle@MOF core–shell nanostructures. Adv. Mater. 2013, 25, 5819–5825.

    Article  Google Scholar 

  20. Guan, B. Y.; Yu, X. Y.; Wu, H. B.; Lou, X. W. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv. Mater., 2017, 29, 1703614.

    Article  Google Scholar 

  21. Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbonnanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.

    Article  Google Scholar 

  22. Volosskiy, B.; Niwa, K.; Chen, Y.; Zhao, Z. P.; Weiss, N. O.; Zhong, X.; Ding, M. N.; Lee, C.; Huang, Y.; Duan, X. F. Metal-organic framework templated synthesis of ultrathin, well-aligned metallic nanowires. ACS Nano 2015, 9, 3044–3049.

    Article  Google Scholar 

  23. Chen, Y. Z.; Zhou, Y. X.; Wang, H. W.; Lu, J. L.; Uchida, T.; Xu, Q.; Yu, S. H.; Jiang, H. L. Multifunctional PdAg@MIL-101 for one-pot cascade reactions: Combination of host–guest cooperation and bimetallic synergy in catalysis. ACS Catal. 2015, 5, 2062–2069.

    Article  Google Scholar 

  24. Wu, S. S.; Zhu, Y. G.; Huo, Y. F.; Luo, Y. C.; Zhang, L. H.; Wan, Y.; Nan, B.; Cao, L. J.; Wang, Z. Y.; Li, M. C. et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 2017, 60, 654–663.

    Article  Google Scholar 

  25. Wang, B. Q.; Liu, W. X.; Zhang, W. N.; Liu, J. F. Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions. Nano Res. 2017, 10, 3826–3835.

    Article  Google Scholar 

  26. Li, X. L.; Zhang, B. Y.; Tang, L. L.; Goh, T. W.; Qi, S. Y.; Volkov, A.; Pei, Y. C.; Qi, Z. Y.; Tsung, C.-K.; Stanley, L. et al. Cooperative multifunctional catalysts for nitrone synthesis: Platinum nanoclusters in amine-functionalized metal–organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 16371–16375.

    Article  Google Scholar 

  27. Li, X. L.; Goh, T. W.; Li, L.; Xiao, C. X.; Guo, Z. Y.; Zeng, X. C.; Huang, W. Y. Controlling catalytic properties of Pd nanoclusters through their chemical environment at the atomic level using isoreticular metal–organic frameworks. ACS Catal. 2016, 6, 3461–3468.

    Article  Google Scholar 

  28. Li, X. L.; Guo, Z. Y.; Xiao, C. X.; Goh, T. W.; Tesfagaber, D.; Huang, W. Y. Tandem catalysis by palladium nanoclusters encapsulated in metal–organic frameworks. ACS Catal. 2014, 4, 3490–3497.

    Article  Google Scholar 

  29. Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. Pt Nanoclusters confined within metal–organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal. 2014, 4, 1340–1348.

    Article  Google Scholar 

  30. Boisen, A.; Dahl, S.; Nørskov, J. K.; Christensen, C. H. Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. J. Catal. 2005, 230, 309–312.

    Article  Google Scholar 

  31. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalatebased solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

    Article  Google Scholar 

  32. Yin, S. F.; Xu, B. Q.; Zhou, X. P.; Au, C. T. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal. A: Gen. 2004, 277, 1–9.

    Article  Google Scholar 

  33. Aika, K.; Ohya, A.; Ozaki, A.; Inoue, Y.; Yasumori, I. Support and promoter effect of ruthenium catalyst: II. Ruthenium/alkaline earth catalyst for activation of dinitrogen. J. Catal. 1985, 92, 305–311.

    Article  Google Scholar 

  34. Aika, K.; Takano, T.; Murata, S. Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia synthesis: 3. A magnesiasupported ruthenium catalyst. J. Catal. 1992, 136, 126–140.

    Article  Google Scholar 

  35. Kubota, J.; Aika, K. Infrared studies of adsorbed dinitrogen on supported ruthenium catalysts for ammonia synthesis: Effects of the alumina and magnesia supports and the cesium compound promoter. J. Phys. Chem. 1994, 98, 11293–11300.

    Article  Google Scholar 

  36. Larichev, Y. V. Valence state study of supported ruthenium Ru/MgO catalysts. J. Phys. Chem. C 2008, 112, 14776–14780.

    Article  Google Scholar 

  37. Ge, J. J.; He, D. S.; Chen, W. X.; Ju, H. X.; Zhang, H.; Chao, T. T.; Wang, X. Q.; You, R.; Lin, Y.; Wang, Y. et al. Atomically dispersed Ru on ultrathin Pd nanoribbons. J. Am. Chem. Soc. 2016, 138, 13850–13853.

    Article  Google Scholar 

  38. Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S. W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940.

    Article  Google Scholar 

  39. Kitano, M.; Kanbara, S.; Inoue, Y.; Kuganathan, N.; Sushko, P. V.; Yokoyama, T.; Hara, M.; Hosono, H. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 2015, 6, 6731.

    Article  Google Scholar 

  40. Wang, P. K.; Chang, F.; Gao, W. B.; Guo, J. P.; Wu, G. T.; He, T.; Chen, P. Breaking scaling relations to achieve lowtemperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64–70.

    Google Scholar 

  41. Rosowski, F.; Hornung, A.; Hinrichsen, O.; Herein, D.; Muhler, M.; Ertl, G. Ruthenium catalysts for ammonia synthesis at high pressures: Preparation, characterization, and power-law kinetics. Appl. Catal. A: Gen. 1997, 151, 443–460.

    Article  Google Scholar 

  42. Rossetti, I.; Sordelli, L.; Ghigna, P.; Pin, S.; Scavini, M.; Forni, L. EXAFS−XANES evidence of in situ cesium reduction in Cs−Ru/C catalysts for ammonia synthesis. Inorg. Chem. 2011, 50, 3757–3765.

    Article  Google Scholar 

  43. Larichev, Y. V. Effect of Cs+ promoter in Ru/MgO catalysts. J. Phys. Chem. C 2011, 115, 631–635.

    Article  Google Scholar 

  44. Gao, Y.; Bai, G.; Liang, Y.; Dunham, G. C.; Chambers, S. A. Structure and surface morphology of highly conductive RuO2 films grown on MgO by oxygen-plasma-assisted molecular beam epitaxy. J. Mater. Res. 1997, 12, 1844–1849.

    Article  Google Scholar 

  45. Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

    Article  Google Scholar 

  46. Liu, H. Z. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chinese J. Catal. 2014, 35, 1619–1640.

    Article  Google Scholar 

  47. Choudhary, T. V.; Sivadinarayana, C.; Goodman, D. W. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 2001, 72, 197–201.

    Article  Google Scholar 

  48. Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.

    Article  Google Scholar 

  49. Hayashi, F.; Toda, Y.; Kanie, Y.; Kitano, M.; Inoue, Y.; Yokoyama, T.; Hara, M.; Hosono, H. Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7:e. Chem. Sci. 2013, 4, 3124–3130.

    Article  Google Scholar 

  50. García-Bordejé, E.; Armenise, S.; Roldán, L. Toward practical application of H2 generation from ammonia decomposition guided by rational catalyst design. Catal. Rev. 2014, 56, 220–237.

    Article  Google Scholar 

  51. Guo, J. P.; Wang, P. K.; Wu, G. T.; Wu, A. A.; Hu, D. Q.; Xiong, Z. T.; Wang, J. H.; Yu, P.; Chang, F.; Chen, Z. et al. Lithium imide synergy with 3d transition-metal nitrides leading to unprecedented catalytic activities for ammonia decomposition. Angew. Chem., Int. Ed. 2015, 54, 2950–2954.

    Article  Google Scholar 

  52. Kowalczyk, Z.; Sentek, J.; Jodzis, S.; Mizera, E.; Góralski, J.; Paryjczak, T.; Diduszko, R. An alkali-promoted ruthenium catalyst for the synthesis of ammonia, supported on thermally modified active carbon. Catal. Lett. 1997, 45, 65–72.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21521091, 21131004, 21390393, U1463202, 21573119, 21590792, and 21406184). We also thank the Shanghai Synchrotron Radiation Facility (No. BL14W1) for providing beam time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhu or Chen Chen.

Electronic supplementary material

Supplementary material, approximately 263 KB.

Supplementary material, approximately 1.09 MB.

12274_2018_2062_MOESM3_ESM.pdf

Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, W., Chen, W. et al. Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”. Nano Res. 11, 4774–4785 (2018). https://doi.org/10.1007/s12274-018-2062-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2062-4

Keywords

Navigation