Skip to main content
Log in

Synthesis of ultrathin semicircle-shaped copper nanowires in ethanol solution for low haze flexible transparent conductors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Copper nanowires (CuNWs) are becoming an indispensable item for next-generation transparent optical devices due to their excellent conductivity and transparency. In this work, ultrathin semicircle-shaped copper nanowires(SCuNWs) with a diameter of ∼ 15 nm and a length of ∼ 30 μm (aspect ratio of ∼2,000) were synthesized in ethanol solution. The mechanism and factors that affect the morphology and dispersity of the SCuNWs were investigated. The prepared SCuNWs were coated on polyethylene terephthalate (PET) or polydimethylsiloxane (PDMS) substrate to fabricate flexible transparent conductors (FTCs). The fabricated FTCs exhibited excellent optoelectrical performance and low haze. In addition, the fabricated FTCs showed high mechanical stability during stretching and bending, indicating their great potential in flexible optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  Google Scholar 

  2. Yim, J. H.; Joe, S.-Y.; Pang, C.; Lee, K. M.; Jeong, H.; Park, J.-Y.; Ahn, Y. H.; de Mello, J. C.; Lee, S. Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. ACS Nano 2014, 8, 2857–2863.

    Article  Google Scholar 

  3. Hu, W. L.; Wang, R. R.; Lu, Y. F.; Pei, Q. B. An elastomeric transparent composite electrode based on copper nanowires and polyurethane. J. Mater. Chem. C 2014, 2, 1298–1305.

    Article  Google Scholar 

  4. Wang, R. R.; Zhai, H. T.; Wang, T.; Wang, X.; Cheng, Y.; Shi, L. J.; Sun, J. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res. 2016, 9, 2138–2148.

    Article  Google Scholar 

  5. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    Article  Google Scholar 

  6. Zhang, Y.; Guo, J. N.; Xu, D.; Sun, Y.; Yan, F. One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes. ACS Appl. Mater. Interfaces 2017, 9, 25465–25473.

    Article  Google Scholar 

  7. Hwang, H.; Kim, A.; Zhong, Z. Y.; Kwon, H. C.; Jeong, S.; Moon, J. Reducible-shell-derived pure-copper-nanowire network and its application to transparent conducting electrodes. Adv. Funct. Mater. 2016, 26, 6545–6554.

    Article  Google Scholar 

  8. Granqvist, C. G.; Hultåker, A. Transparent and conducting ITO films: New developments and applications. Thin Solid Films 2002, 411, 1–5.

    Article  Google Scholar 

  9. Chen, J. Y.; Zhou, W. X.; Chen, J.; Fan, Y.; Zhang, Z. Q.; Huang, Z. D.; Feng, X. M.; Mi, B. X.; Ma, Y. W.; Huang, W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells. Nano Res. 2015, 8, 1017–1025.

    Article  Google Scholar 

  10. Ye, S. R.; Rathmell, A. R.; Chen, Z. F.; Stewart, I. E.; Wiley, B. J. Metal nanowire networks: The next generation of transparent conductors. Adv. Mater. 2014, 26, 6670–6687.

    Article  Google Scholar 

  11. Han, S.; Hong, S.; Ham, J.; Yeo, J.; Lee, J.; Kang, B.; Lee, P.; Kwon, J.; Lee, S. S.; Yang, M. Y. et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 2014, 26, 5808–5814.

    Article  Google Scholar 

  12. Bob, B.; Machness, A.; Song, T.-B.; Zhou, H. P.; Chung, C.-H.; Yang, Y. Silver nanowires with semiconducting ligands for low-temperature transparent conductors. Nano Res. 2016, 9, 392–400.

    Article  Google Scholar 

  13. Kim, T.; Canlier, A.; Kim, G. H.; Choi, J.; Park, M.; Han, S. M. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl. Mater. Interfaces 2013, 5, 788–794.

    Article  Google Scholar 

  14. Sciacca, B.; van de Groep, J.; Polman, A.; Garnett, E. C. Solution-grown silver nanowire ordered arrays as transparent electrodes. Adv. Mater. 2016, 28, 905–909.

    Article  Google Scholar 

  15. Jin, Y. X.; Wang, K. Q.; Cheng, Y. R.; Pei, Q. B.; Xu, Y. X.; Xiao, F. Removable large-area ultrasmooth silver nanowire transparent composite electrode. ACS Appl. Mater. Interfaces 2017, 9, 4733–4741.

    Article  Google Scholar 

  16. Zhong, Z. Y.; Lee, H.; Kang, D.; Kwon, S.; Choi, Y.-M.; Kim, I.; Kim, K.-Y.; Lee, Y.; Woo, K.; Moon, J. Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications. ACS Nano 2016, 10, 7847–7854.

    Article  Google Scholar 

  17. Li, B.; Ye, S. R.; Stewart, I. E.; Alvarez, S.; Wiley, B. J. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 2015, 15, 6722–6726.

    Article  Google Scholar 

  18. Yin, Z. X.; Song, S. K.; You, D. J.; Ko, Y.; Cho, S.; Yoo, J.; Park, S. Y.; Piao, Y. Z.; Chang, S. T.; Kim, Y. S. Novel synthesis, coating, and networking of curved copper nanowires for flexible transparent conductive electrodes. Small 2015, 11, 4576–4583.

    Article  Google Scholar 

  19. Song, M.; You, D. S.; Lim, K.; Park, S.; Jung, S.; Kim, C. S.; Kim, D. H.; Kim, D. G.; Kim, J. K.; Park, J. Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes. Adv. Funct. Mater. 2013, 23, 4177–4184.

    Article  Google Scholar 

  20. Song, J. Z.; Li, J. H.; Xu, J. Y.; Zeng, H. B. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett. 2014, 14, 6298–6305.

    Article  Google Scholar 

  21. Cheng, Y.; Wang, S. L.; Wang, R. R.; Sun, J.; Gao, L. Copper nanowire based transparent conductive films with high stability and superior stretchability. J. Mater. Chem. C 2014, 2, 5309–5316.

    Article  Google Scholar 

  22. Zhong, Z. Y.; Woo, K.; Kim, I.; Hwang, H.; Kwon, S.; Choi, Y.-M.; Lee, Y.; Lee, T.-M.; Kim, K.; Moon, J. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded cu nanowires using intense pulsed light irradiation. Nanoscale 2016, 8, 8995–9003.

    Article  Google Scholar 

  23. Araki, T.; Jiu, J. T.; Nogi, M.; Koga, H.; Nagao, S.; Sugahara, T.; Suganuma, K. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Res. 2014, 7, 236–245.

    Article  Google Scholar 

  24. Tang, Y.; Gong, S.; Chen, Y.; Yap, L. W.; Cheng, W. L. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 2014, 8, 5707–5714.

    Article  Google Scholar 

  25. Yin, Z. X.; Song, S. K.; Cho, S.; You, D.-J.; Yoo, J.; Chang, S. T.; Kim, Y. S. Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach. Nano Res. 2017, 10, 3077–3091

    Article  Google Scholar 

  26. Zhang, Y.; Zhou, N.; Zhang, K. Q.; Yan, F. Plasmonic copper nanowire@TiO2 nanostructures for improving the performance of dye-sensitized solar cells. J. Power Sources 2017, 342, 292–300.

    Article  Google Scholar 

  27. Glaria, A.; Cure, J.; Piettre, K.; Coppel, Y.; Turrin, C. O.; Chaudret, B.; Fau, P. Deciphering ligands’ interaction with Cu and Cu2O nanocrystal surfaces by nmr solution tools. Chem—Eur. J. 2015, 21, 1169–1178.

    Google Scholar 

  28. Qian, F.; Lan, P. C.; Olson, T.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Han, T. Y.-J. Multiphase separation of copper nanowires. Chem. Commun. 2016, 52, 11627–11630.

    Google Scholar 

  29. Wu, L. Z.; Yu, J. Q.; Chen, L.; Yang, D.; Zhang, S. M.; Han, L.; Ban, M. Y.; He, L.; Xu, Y.; Zhang, Q. A general and facile approach to disperse hydrophobic nanocrystals in water with enhanced long-term stability. J. Mater. Chem. C 2017, 5, 3065–3071.

    Article  Google Scholar 

  30. Hwang, C.; An, J.; Choi, B. D.; Kim, K.; Jung, S.-W.; Baeg, K.-J.; Kim, M.-G.; Ok, K. M.; Hong, J. Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode. J. Mater. Chem. C 2016, 4, 1441–1447.

    Article  Google Scholar 

  31. Zhan, Y. J.; Lu, Y.; Peng, C.; Lou, J. Solvothermal synthesis and mechanical characterization of single crystalline copper nanorings. J. Cryst. Growth 2011, 325, 76–80.

    Article  Google Scholar 

  32. Zhou, L.; Fu, X.-F.; Yu, L.; Zhang, X.; Yu, X.-F.; Hao, Z.-H. Crystal structure and optical properties of silver nanorings. Appl. Phy. Lett. 2009, 94, 153102.

    Article  Google Scholar 

  33. Halpern, A. R.; Corn, R. M. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 2013, 7, 1755–1762.

    Article  Google Scholar 

  34. Dang, T. M. D.; Le, T. T. T.; Fribourg-Blanc, E.; Dang, M. C. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2011, 2, 015009.

    Google Scholar 

  35. Nasrollahzadeh, M.; Sajadi, S. M.; Mirzaei, Y. An efficient one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles at room temperature by green synthesized Cu NPs using otostegia persica leaf extract. J. Colloid. Interface Sci. 2016, 468, 156–162.

    Article  Google Scholar 

  36. Cui, F.; Yu, Y.; Dou, L. T.; Sun, J. W.; Yang, Q.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P. D. Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett. 2015, 15, 7610–7615.

    Article  Google Scholar 

  37. Yin, Z. X.; Lee, C.; Cho, S.; Yoo, J.; Piao, Y. Z.; Kim, Y. S. Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes. Small 2014, 10, 5047–5052.

    Google Scholar 

  38. Ni, C. Y.; Hassan, P. A.; Kaler, E. W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir 2005, 21, 3334–3337.

    Article  Google Scholar 

  39. Yang, H.-J.; He, S.-Y.; Tuan, H.-Y. Self-seeded growth of five-fold twinned copper nanowires: Mechanistic study, characterization, and sers applications. Langmuir 2014, 30, 602–610.

    Article  Google Scholar 

  40. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  41. Liu, Y. J.; Liu, X. W.; Zhan, Y. J.; Fan, H. M.; Lu, Y. Copper nanocoils synthesized through solvothermal method. Sci. Rep. 2015, 5, 16879.

    Article  Google Scholar 

  42. Luo, M.; Ruditskiy, A.; Peng, H. C.; Tao, J.; Figueroa-Cosme, L.; He, Z. K.; Xia, Y. N. Penta-twinned copper nanorods: Facile synthesis via seed-mediated growth and their tunable plasmonic properties. Adv. Funct. Mater. 2016, 26, 1209–1216.

    Article  Google Scholar 

  43. Pastoriza-Santos, I.; Liz-Marzán, L. M. N, N-dimeth-ylformamide as a reaction medium for metal nanoparticle synthesis. Adv. Funct. Mater. 2009, 19, 679–688.

    Article  Google Scholar 

  44. Xie, J.; Zhang, X.; Zhang, H.; Zhang, J.; Li, S.; Wang, R.; Pan, B.; Xie, Y. Intralayered ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance. Adv. Mater. 2017. DOI: 10.1002/adma.201604765.

    Google Scholar 

  45. Li, S. J.; Chen, Y. Y.; Huang, L. J.; Pan, D. C. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorg. Chem. 2014, 53, 4440–4444.

    Article  Google Scholar 

  46. Reiser, B.; Gerstner, D.; Gonzalez-Garcia, L.; Maurer, J. H. M.; Kanelidis, I.; Kraus, T. Multivalent bonds in self-assembled bundles of ultrathin gold nanowires. Phy. Chem. Chem. Phy. 2016, 18, 27165–27169.

    Article  Google Scholar 

  47. Reiser, B.; Gerstner, D.; Gonzalez-Garcia, L.; Maurer, J. H. M.; Kanelidis, I.; Kraus, T. Spinning hierarchical gold nanowire microfibers by shear alignment and intermolecular self-assembly. ACS Nano 2017, 11, 4934–4942.

    Article  Google Scholar 

  48. Lim, G.-H.; Lee, S. J.; Han, I.; Bok, S.; Lee, J. H.; Nam, J.; Cho, J. H.; Lim, B. Polyol synthesis of silver nanostructures: Inducing the growth of nanowires by a heat-up process. Chem. Phy. Lett. 2014, 602, 10–15.

    Article  Google Scholar 

  49. Lee, J. S.; Kim, N. H.; Kang, M. S.; Yu, H.; Lee, D. R.; Oh, J. H.; Chang, S. T.; Cho, J. H. Wafer-scale patterning of reduced graphene oxide electrodes by transfer-and-reverse stamping for high performance ofets. Small 2013, 9, 2817–2825.

    Article  Google Scholar 

  50. Guo, H. Z.; Lin, N.; Chen, Y. Z.; Wang, Z. W.; Xie, Q. S.; Zheng, T. C.; Gao, N.; Li, S. P.; Kang, J. Y.; Cai, D. J. et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 2013, 3, 2323.

    Article  Google Scholar 

  51. Chu, C. R.; Lee, C.; Koo, J.; Lee, H. M. Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability. Nano Res. 2016, 9, 2162–2173.

    Article  Google Scholar 

  52. Chu, H.-C.; Chang, Y.-C.; Lin, Y.; Chang, S.-H.; Chang, W.-C.; Li, G.-A.; Tuan, H.-Y. Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications. ACS Appl. Mater. Interfaces 2016, 8, 13009–13017.

    Article  Google Scholar 

  53. Rathmell, A. R.; Wiley, B. J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 2011, 23, 4798–4803.

    Article  Google Scholar 

  54. Zhang, D. P.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

    Article  Google Scholar 

  55. Mayousse, C.; Celle, C.; Carella, A.; Simonato, J.-P. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS. Nano Res. 2014, 7, 315–324.

    Google Scholar 

  56. Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905–2910.

    Article  Google Scholar 

  57. Hu, L. B.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  Google Scholar 

  58. Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117–5122.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund for Distinguished Young Scholars (No. 21425417), the National Natural Science Foundation of China (Nos. 21603156 and 21704071), Jiangsu Province Science Foundation for Youths (Nos. BK20170331 and BK20170332) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yan.

Electronic supplementary material

12274_2018_1966_MOESM1_ESM.pdf

Synthesis of ultrathin semicircle-shaped copper nanowires in ethanol solution for low haze flexible transparent conductors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, J., Xu, D. et al. Synthesis of ultrathin semicircle-shaped copper nanowires in ethanol solution for low haze flexible transparent conductors. Nano Res. 11, 3899–3910 (2018). https://doi.org/10.1007/s12274-018-1966-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1966-3

Keywords

Navigation