Skip to main content
Log in

High-performance sub-10-nm monolayer black phosphorene tunneling transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Moore’s law is approaching its physical limit. Tunneling field-effect transistors (TFETs) based on 2D materials provide a possible scheme to extend Moore’s lawdown to the sub-10-nm region owing to the electrostatic integrity and absence of dangling bonds in 2D materials. We report an ab initio quantum transport study on the device performance of monolayer (ML) black phosphorene (BP)TFETs in the sub-10-nm scale (6–10 nm). Under the optimal schemes, the ML BP TFETs show excellent device performance along the armchair transport direction.The on-state current, delay time, and power dissipation of the optimal sub-10-nm ML BP TFETs significantly surpass the latest International Technology Roadmap for Semiconductors (ITRS) requirements for high-performance devices. The subthreshold swings are 56–100 mV/dec, which are much lower than those of their Schottky barrier and metal oxide semiconductor field-effect transistor counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quinn, J. J.; Kawamoto, G.; Mccombe, B. D. Subband spectroscopy by surface channel tunneling. Surf. Sci. 1978, 73, 190–196.

    Article  Google Scholar 

  2. Ionescu, A. M.; Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 2011, 479, 329–337.

    Article  Google Scholar 

  3. Lu, H.; Seabaugh, A. Tunnel field-effect transistors: State-of-the-art. IEEE J. Electron. Dev. Sci. 2014, 2, 44–49.

    Article  Google Scholar 

  4. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  Google Scholar 

  5. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

    Article  Google Scholar 

  6. Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283.

    Article  Google Scholar 

  7. Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

    Article  Google Scholar 

  8. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

    Article  Google Scholar 

  9. Léonard, F.; Talin, A. A. Electrical contacts to one- and two- dimensional nanomaterials. Nat. Nanotechnol. 2011, 6, 773–783.

    Article  Google Scholar 

  10. Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.

    Google Scholar 

  11. Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733–5739.

    Article  Google Scholar 

  12. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  13. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  Google Scholar 

  14. Chang, J.; Hobbs, C. Theoretical study of phosphorene tunneling field effect transistors. Appl. Phys. Lett. 2015, 106, 083509.

    Article  Google Scholar 

  15. Liu, F.; Shi, Q.; Wang, J.; Guo, H. Device performance simulations of multilayer black phosphorus tunneling transistors. Appl. Phys.Lett. 2015, 107, 203501.

    Article  Google Scholar 

  16. Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

    Article  Google Scholar 

  17. Nourbakhsh, A.; Zubair, A.; Sajjad, R. N.; Amir Tavakkoli, K. G.; Chen, W.; Fang, S.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kaxiras, E. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 2016, 16, 7798–7806.

    Article  Google Scholar 

  18. Xu, K.; Chen, D. X.; Yang, F. Y.; Wang, Z. X.; Yin, L.; Wang, F.; Cheng, R. Q.; Liu, K. H.; Xiong, J.; Liu, Q. et al. Sub-10 nm nanopatterns architecture for 2D materials field-effect transistors. Nano Lett. 2017, 17, 1065–1070.

    Article  Google Scholar 

  19. Xie, L.; Liao, M. Z.; Wang, S. P.; Yu, H.; Du, L. J.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X. B. et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 2017, 29, 1702522.

    Article  Google Scholar 

  20. Atomistix ToolKit version 2016.3, QuantumWise A/S [Online]. www.quantumwise.com (accessed Oct 10, 2017).

  21. Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

    Article  Google Scholar 

  22. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matt. 2002, 14, 2745–2779.

    Article  Google Scholar 

  23. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  24. Çakır, D.; Peeters, F. M. Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures. Phys. Rev. B 2014, 89, 245403.

    Article  Google Scholar 

  25. Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, England, 1997.

    Google Scholar 

  26. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  27. Zhong, H. X.; Quhe, R. G.; Wang, Y. Y.; Ni, Z. Y.; Ye, M.; Song, Z. G.; Pan, Y. Y.; Yang, J. B.; Yang, L.; Lei, M. et al. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: Beyond the energy band calculations. Sci. Rep. 2016, 6, 21786.

    Article  Google Scholar 

  28. Wang, Y. Y.; Yang, R. X.; Quhe, R. H.; Zhong, H. X.; Cong, L. X.; Ye, M.; Ni, Z. Y.; Song, Z. G.; Yang, J. B.; Shi, J. J. et al. Does p-type ohmic contact exist in WSe2-metal interfaces? Nanoscale 2015, 8, 1179–1191.

    Article  Google Scholar 

  29. Pan, Y. Y.; Dan, Y.; Wang, Y. Y.; Ye, M.; Zhang, H.; Quhe, R. H.; Zhang, X. Y.; Li, J. Z.; Guo, W. L.; Yang, L. et al. Schottky barriers in bilayer phosphorene transistors. ACS Appl. Mater. Interfaces 2017, 9, 12694–12705.

    Article  Google Scholar 

  30. Pan, Y. Y.; Wang, Y. Y.; Ye, M.; Quhe, R. H.; Zhong, H. X.; Song, Z. G.; Peng, X. Y.; Yu, D. P.; Yang, J. B.; Shi, J. J. et al. Monolayer phosphorene–metal contacts. Chem. Mater. 2016, 28, 2100–2109.

    Article  Google Scholar 

  31. Zhang, X. Y.; Pan, Y. Y.; Ye, M.; Quhe, R. H.; Wang, Y. Y.; Guo, Y.; Zhang, H.; Dan, Y.; Song, Z. G.; Li, J. Z. et al. Three-layer phosphorene-metal interfaces. Nano Res., in press, https:// doi.org/10.1007/s12274-017-1680-6.

  32. Yoon, Y. J.; Seo, J. H.; Cho, S.; Kwon, H. I.; Lee, J. H.; Kang, I. M. Sub-10 nm Ge/GaAs heterojunction-based tunneling field- effect transistor with vertical tunneling operation for ultra-low- power applications. J. Semicond. Technol. Sci. 2016, 16, 172–178.

    Article  Google Scholar 

  33. Chien, N. D.; Shih, C. H. Short channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions. Superlatt. Microst. 2016, 100, 857–866.

    Article  Google Scholar 

  34. Jiang, X. W.; Luo, J. W.; Li, S. S.; Wang, L. W. How good is mono-layer transition-metal dichalcogenide tunnel field-effect transistors in sub-10 nm?—An ab initio simulation study. In Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015.

    Google Scholar 

  35. Quhe, R. H.; Peng, X. Y.; Pan, Y. Y.; Ye, M.; Wang, Y. Y.; Zhang, H.; Feng, S. Y.; Zhang, Q. X.; Shi, J. J.; Yang, J. B. et al. Can a black phosphorus schottky-barrier transistor be good enough? ACS Appl. Mater. Interfaces 2017, 9, 3959–3966.

    Article  Google Scholar 

  36. Cao, W.; Kang, J. H.; Sarkar, D.; Liu, W.; Banerjee, K. 2D semiconductor FETs—Projections and design for sub-10 nm VLSI. IEEE Trans. Electron. Dev. 2015, 62, 3459–3469.

    Article  Google Scholar 

  37. Szabo, A.; Rhyner, R.; Carrillo-Nunez, H.; Luisier, M. Phonon-limited performance of single-layer, single-gate black phosphorus n- and p-type field-effect transistors. In Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015.

    Google Scholar 

  38. Yin, D. M.; Han, G.; Yoon, Y. Scaling limit of bilayer phosphorene FETs. IEEE Electron Dev. Lett. 2015, 36, 978–980.

    Article  Google Scholar 

  39. Ni, Z. Y.; Ye, M.; Ma, J. H.; Wang, Y. Y.; Quhe, R. H.; Zheng, J. X.; Dai, L.; Yu, D. P.; Shi, J. J.; Yang, J. B. et al. Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv. Electron Mater. 2016, 2, 1600191.

    Article  Google Scholar 

  40. Liu, F.; Wang, Y J..; Liu, X. Y.; Wang, J.; Guo, H. Ballistic transport in monolayer black phosphorus transistors. IEEE Trans. Electron Dev. 2014, 61, 3871–3876.

    Article  Google Scholar 

  41. Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O’Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 2014, 50, 13338–13341.

    Article  Google Scholar 

  42. Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887–1892.

    Article  Google Scholar 

  43. Yang, Z. B.; Hao, J. H.; Yuan, S. G.; Lin, S. H.; Yau, H. M.; Dai, J. Y.; Lau, S. P. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 2015, 27, 3748–3754.

    Article  Google Scholar 

  44. Lu, W. L.; Nan, H. Y.; Hong, J. H.; Chen, Y. N.; Zhu, C.; Liang, Z.; Ma, X. Y.; Ni, Z. H.; Jin, C. H.; Zhang, Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characte-rization. Nano Res. 2014, 7, 853–859.

    Article  Google Scholar 

  45. Akhtar, M.; Anderson, G.; Zhao, R.; Alruqi, A.; Mroczkowska, J. E.; Sumanasekera, G.; Jasinski, J. B. Recent advances in synthesis, properties, and applications of phosphorene. NPJ 2D Mater. Appl. 2017, 1, 5.

    Article  Google Scholar 

  46. Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X. A.; Hu, W. P.; Özyilmaz, B.; Neto, A. H. C. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.

    Article  Google Scholar 

  47. Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Neto, A. H. C.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145–2151.

    Article  Google Scholar 

  48. Yang, B. C.; Wan, B. S.; Zhou, Q. H.; Wang, Y.; Hu, W. T.; Lv, W. M.; Chen, Q.; Zeng, Z. M.; Wen, F. S.; Xiang, J. Y. et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408–9415.

    Article  Google Scholar 

  49. Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 2016, 12, 5000–5007.

    Article  Google Scholar 

  50. Buscema, M.; Groenendijk, D. J.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 2014, 5, 4651.

    Article  Google Scholar 

  51. Robbins, M. C.; Koester, S. J. Black phosphorus p-and n-MOSFETs with electrostatically doped contacts. IEEE Electron Dev. Lett. 2017, 38, 285–288.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Scientific Research Start-up Funding of North China University of Technology, the Youth Innovation Foundation of North China University of Technology (No.1743026), the National Natural Science Foundation of China (Nos.11674005 and 11704008), National Materials Genome Project (No. 2016YFB0700601), and the National Basic Research Program of China (No. 2013CB932604).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Li, Feng Pan or Jing Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Tie, J., Li, J. et al. High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res. 11, 2658–2668 (2018). https://doi.org/10.1007/s12274-017-1895-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1895-6

Keywords

Navigation