Skip to main content
Log in

Reaction inside a viral protein nanocage: Mineralization on a nanoparticle seed after encapsulation via self-assembly

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Protein nanocages are ideal templates for the bio-inspired fabrication of nanomaterials due to several advantageous properties. During the mineralization of nanoparticles (NPs) inside protein nanocages, most studies have employed a common strategy: seed formation inside protein nanocages followed by seeded NP growth. However, the seed formation step is restricted to gentle reaction conditions to avoid damage to the protein nanocages, which may greatly limit the spectrum of seed materials used for NP growth. We put forward a simple route to circumvent such a limitation: encapsulation of a preformed NP as the seed via self-assembly, followed by the growth of an outer metal layer. Using such a method, we succeeded in mineralizing size-tunable Au NPs and Au@Ag core–shell NPs (<10 nm in diameter) with narrow size distributions inside the virus-based NPs of simian virus 40. The present route enables the utilization of NPs synthesized under any conditions as the starting seeds for nanomaterial growth inside protein nanocages. Therefore, it potentially leads to novel bioinorganic chimeric nanomaterials with tailorable components and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, J. L.; Lin, L. Q.; Sun, D. H.; Chen, H. M.; Yang, D. P.; Li, Q. B. Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 2015, 44, 6330–6374.

    Article  Google Scholar 

  2. Zhou, K.; Eiben, S.; Wang, Q. B. Coassembly of tobacco mosaic virus coat proteins into nanotubes with uniform length and improved physical stability. ACS Appl. Mater. Interfaces 2016, 8, 13192–13196.

    Article  Google Scholar 

  3. Luo, Q.; Hou, C. X.; Bai, Y. S.; Wang, R. B.; Liu, J. Q. Protein assembly: Versatile approaches to construct highly ordered nanostructures. Chem. Rev. 2016, 116, 13571–13632.

    Article  Google Scholar 

  4. Jutz, G.; van Rijn, P.; Miranda, B. S.; Boker, A. Ferritin: A versatile building block for bionanotechnology. Chem. Rev. 2015, 115, 1653–1701.

    Article  Google Scholar 

  5. Li, F.; Wang, Q. B. Fabrication of nanoarchitectures templated by virus-based nanoparticles: Strategies and applications. Small 2014, 10, 230–245.

    Article  Google Scholar 

  6. Dickerson, M. B.; Sandhage, K. H.; Naik, R. R. Proteinand peptide-directed syntheses of inorganic materials. Chem. Rev. 2008, 108, 4935–4978.

    Article  Google Scholar 

  7. Yang, D. P.; Chen, S. H.; Huang, P.; Wang, X. S.; Jiang, W. Q.; Pandoli, O.; Cui, D. X. Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. Green Chem. 2010, 12, 2038–2042.

    Article  Google Scholar 

  8. Douglas, T.; Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 1998, 393, 152–155.

    Article  Google Scholar 

  9. Zhou, K.; Zhang, J. T.; Wang, Q. B. Site-selective nucleation and controlled growth of gold nanostructures in tobacco mosaic virus nanotubulars. Small 2015, 11, 2505–2509.

    Article  Google Scholar 

  10. Chen, W.; Wang, G. C.; Tang, R. K. Nanomodification of living organisms by biomimetic mineralization. Nano Res. 2014, 7, 1404–1428.

    Article  Google Scholar 

  11. Ghosh, D.; Lee, Y.; Thomas, S.; Kohli, A. G.; Yun, D. S.; Belcher, A. M.; Kelly, K. A. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnol. 2012, 7, 677–682.

    Article  Google Scholar 

  12. Górzny, M. Ł.; Walton, A. S.; Evans, S. D. Synthesis of high-surface-area platinum nanotubes using a viral template. Adv. Funct. Mater. 2010, 20, 1295–1300.

    Article  Google Scholar 

  13. Yang, C. X.; Manocchi, A. K.; Lee, B.; Yi, H. M. Viraltemplated palladium nanocatalysts for Suzuki coupling reaction. J. Mater. Chem. 2011, 21, 187–194.

    Article  Google Scholar 

  14. Lee, L. A.; Niu, Z. W.; Wang, Q. Viruses and virus-like protein assemblies-chemically programmable nanoscale building blocks. Nano Res. 2009, 2, 349–364.

    Article  Google Scholar 

  15. Dang, X. N.; Yi, H. J.; Ham, M. H.; Qi, J. F.; Yun, D. S.; Ladewski, R.; Strano, M. S.; Hammond, P. T.; Belcher, A. M. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotechnol. 2011, 6, 377–384.

    Article  Google Scholar 

  16. Liu, Y. H.; Xu, Y. H.; Zhu, Y. J.; Culver, J. N.; Lundgren, C. A.; Xu, K.; Wang, C. S. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 2013, 7, 3627–3634.

    Article  Google Scholar 

  17. Wang, Z. T.; Huang, P.; Jacobson, O.; Wang, Z.; Liu, Y. J.; Lin, L. S.; Lin, J.; Lu, N.; Zhang, H. M.; Tian, R. et al. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano 2016, 10, 3453–3460.

    Article  Google Scholar 

  18. Molino, N. M.; Wang, S.-W. Caged protein nanoparticles for drug delivery. Curr. Opin. Biotechnol. 2014, 28, 75–82.

    Article  Google Scholar 

  19. Klem, M. T.; Young, M.; Douglas, T. Biomimetic synthesis of β-TiO2 inside a viral capsid. J. Mater. Chem. 2008, 18, 3821–3823.

    Article  Google Scholar 

  20. Reichhardt, C.; Uchida, M.; O’Neil, A.; Li, R.; Prevelige, P. E.; Douglas, T. Templated assembly of organic-inorganic materials using the core shell structure of the P22 bacteriophage. Chem. Commun. 2011, 47, 6326–6328.

    Article  Google Scholar 

  21. Okuda, M.; Suzumoto, Y.; Iwahori, K.; Kang, S.; Uchida, M.; Douglas, T.; Yamashita, I. Bio-templated CdSe nanoparticle synthesis in a cage shaped protein, Listeria-Dps, and their two dimensional ordered array self-assembly. Chem. Commun. 2010, 46, 8797–8799.

    Article  Google Scholar 

  22. Kasyutich, O.; Ilari, A.; Fiorillo, A.; Tatchev, D.; Hoell, A.; Ceci, P. Silver ion incorporation and nanoparticle formation inside the cavity of Pyrococcus furiosus ferritin: Structural and size-distribution analyses. J. Am. Chem. Soc. 2010, 132, 3621–3627.

    Article  Google Scholar 

  23. Zhou, Z. Y.; Bedwell, G. J.; Li, R.; Prevelige, P. E.; Gupta, A. Formation mechanism of chalcogenide nanocrystals confined inside genetically engineered virus-like particles. Sci. Rep. 2014, 4, 3832.

    Article  Google Scholar 

  24. Douglas, T.; Strable, E.; Willits, D.; Aitouchen, A.; Libera, M.; Young, M. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater. 2002, 14, 415–418.

    Article  Google Scholar 

  25. Fan, R. L.; Chew, S. W.; Cheong, V. V.; Orner, B. P. Fabrication of gold nanoparticles inside unmodified horse spleen apoferritin. Small 2010, 6, 1483–1487.

    Article  Google Scholar 

  26. Li, T.; Chattopadhyay, S.; Shibata, T.; Cook, R. E.; Miller, J. T.; Suthiwangcharoen, N.; Lee, S.; Winans, R. E.; Lee, B. Synthesis and characterization of Au-core Ag-shell nanoparticles from unmodified apoferritin. J. Mater. Chem. 2012, 22, 14458–14464.

    Article  Google Scholar 

  27. Li, F.; Gao, D.; Zhai, X. M.; Chen, Y. H.; Fu, T.; Wu, D. M.; Zhang, Z. P.; Zhang, X. E.; Wang, Q. B. Tunable, discrete, three-dimensional hybrid nanoarchitectures. Angew. Chem., Int. Ed. 2011, 50, 4202–4205.

    Article  Google Scholar 

  28. Li, F.; Chen, H. L.; Zhang, Y. J.; Chen, Z.; Zhang, Z. P.; Zhang, X. E.; Wang, Q. B. Three-dimensional gold nanoparticle clusters with tunable cores templated by a viral protein scaffold. Small 2012, 8, 3832–3838.

    Article  Google Scholar 

  29. Li, F.; Chen, Y. H.; Chen, H. L.; He, W.; Zhang, Z. P.; Zhang, X. E.; Wang, Q. B. Monofunctionalization of protein nanocages. J. Am. Chem. Soc. 2011, 133, 20040–20043.

    Article  Google Scholar 

  30. Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 2000, 289, 1757–1760.

    Article  Google Scholar 

  31. Wang, T. J.; Zhang, Z. P.; Gao, D.; Li, F.; Wei, H. P.; Liang, X. S.; Cui, Z. Q.; Zhang, X. E. Encapsulation of gold nanoparticles by simian virus 40 capsids. Nanoscale 2011, 3, 4275–4282.

    Article  Google Scholar 

  32. Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

    Article  Google Scholar 

  33. Zeng, J. B.; Cao, Y. Y.; Chen, J. J.; Wang, X. D.; Yu, J. F.; Yu, B. B.; Yan, Z. F.; Chen, X. Au@Ag core/shell nanoparticles as colorimetric probes for cyanide sensing. Nanoscale 2014, 6, 9939–9943.

    Article  Google Scholar 

  34. Lee, I. H.; Lee, J. M.; Jung, Y. Controlled protein embedment onto Au/Ag core–shell nanoparticles for immunolabeling of nanosilver surface. ACS Appl. Mater. Interfaces 2014, 6, 7659–7664.

    Article  Google Scholar 

  35. Li, Y. J.; Shi, Q. R.; Zhang, P. N.; Xiahou, Y. J.; Li, S. Z.; Wang, D. Y.; Xia, H. B. Empirical structural design of core@shell Au@Ag nanoparticles for SERS applications. J. Mater. Chem. C 2016, 4, 6649–6656.

    Article  Google Scholar 

  36. Khlebtsov, B.; Khanadeev, V.; Khlebtsov, N. Surfaceenhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 2016, 9, 2303–2318.

    Article  Google Scholar 

  37. Banerjee, M.; Sharma, S.; Chattopadhyay, A.; Ghosh, S. S. Enhanced antibacterial activity of bimetallic gold–silver core–shell nanoparticles at low silver concentration. Nanoscale 2011, 3, 5120–5125.

    Article  Google Scholar 

  38. Haldar, K. K.; Kundu, S.; Patra, A. Core-size-dependent catalytic properties of bimetallic Au/Ag core–shell nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 21946–21953.

    Article  Google Scholar 

  39. Chuntonov, L.; Bar-Sadan, M.; Houben, L.; Harant, G. Correlating electron tomography and plasmon spectroscopy of single noble metal core–shell nanoparticles. Nano Lett. 2012, 12, 145–150.

    Article  Google Scholar 

  40. Ma, Y. Y.; Li, W. Y.; Cho, E. C.; Li, Z. Y.; Yu, T.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Au@Ag core–shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 2010, 4, 6725–6734.

    Article  Google Scholar 

  41. Chiang, C.; Huang, M. H. Synthesis of small Au–Ag core–shell cubes, cuboctahedra, and octahedra with size tunability and their optical and photothermal properties. Small 2015, 11, 6018–6025.

    Article  Google Scholar 

  42. Lu, L.; Burkey, G.; Halaciuga, I.; Goia, D. V. Core–shell gold/silver nanoparticles: Synthesis and optical properties. J. Colloid Interface Sci. 2013, 392, 90–95.

    Article  Google Scholar 

  43. Nair, L. S.; Laurencin, C. T. Silver nanoparticles: Synthesis and therapeutic applications. J. Biomed. Nanotechnol. 2007, 3, 301–316.

    Article  Google Scholar 

  44. Bykov, Y. S.; Cortese, M.; Briggs, J. A. G.; Bartenschlager, R. Correlative light and electron microscopy methods for the study of virus–cell interactions. FEBS Lett. 2016, 590, 1877–1895.

    Article  Google Scholar 

  45. Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzán, L. M.; Pérez-Juste, J.; Pastoriza-Santos, I. Size tunable Au@Ag core–shell nanoparticles: Synthesis and surfaceenhanced Raman scattering properties. Langmuir 2013, 29, 15076–15082.

    Article  Google Scholar 

  46. Padmos, J. D.; Boudreau, R. T. M.; Weaver, D. F.; Zhang, P. Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Langmuir 2015, 31, 3745–3752.

    Article  Google Scholar 

  47. Li, F.; Li, K.; Cui, Z. Q.; Zhang, Z. P.; Wei, H. P.; Gao, D.; Deng, J. Y.; Zhang, X. E. Viral coat proteins as flexible nano-building-blocks for nanoparticle encapsulation. Small 2010, 6, 2301–2308.

    Article  Google Scholar 

  48. Handley, D. A. Methods for synthesis of colloidal gold. In Colloidal Gold: Principles, Methods, and Applications; Hayat, M. A., Ed.; Academic Press: New York, 1989; Vol. 1, pp 13–32.

    Chapter  Google Scholar 

  49. Graf, C.; van Blaaderen, A. Metallodielectric colloidal core–shell particles for photonic applications. Langmuir 2002, 18, 524–534.

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the financial support from the the National Natural Science Foundation of China (Nos. 31271076, 31470931 and 91527302) and the Key Research Program of the Chinese Academy of Sciences (No. KGZD-EW-T02-3). We are grateful to Dr. D. Gao, B. C. Xu, P. Zhang and A. N. Du at the Center for Instrumental Analysis and Metrology, Wuhan Institute of Virology, CAS for assistance with TEM imaging and Dr. Kun Zhou at Suzhou Institute of Nano-Tech and Nano-Bionics, CAS for help with EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-En Zhang or Feng Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, ZP., Zhang, XE. et al. Reaction inside a viral protein nanocage: Mineralization on a nanoparticle seed after encapsulation via self-assembly. Nano Res. 10, 3285–3294 (2017). https://doi.org/10.1007/s12274-017-1541-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1541-3

Keywords

Navigation