Skip to main content
Log in

Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have demonstrated the improved performance of oxygen evolution reactions (OER) using Au/nickel phosphide (Ni12P5) core/shell nanoparticles (NPs) under basic conditions. NPs with a Ni12P5 shell and a Au core, both of which have well-defined crystal structures, have been prepared using solution-based synthetic routes. Compared with pure Ni12P5 NPs and Au-Ni12P5 oligomer-like NPs, the core/shell crystalline structure with Au shows an improved OER activity. It affords a current density of 10 mA/cm2 at a small overpotential of 0.34 V, in 1 M KOH aqueous solution at room temperature. This enhanced OER activity may relate to the strong structural and effective electronic coupling between the single-crystal core and the shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.

    Article  Google Scholar 

  2. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

    Article  Google Scholar 

  3. Singh, R. N.; Mishra, D.; Anindita; Sinha, A. S. K.; Singh, A. Novel electrocatalysts for generating oxygen from alkaline water electrolysis. Electrochem. Commun. 2007, 9, 1369–1373.

    Article  Google Scholar 

  4. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.

    Article  Google Scholar 

  5. Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1440–1447.

    Article  Google Scholar 

  6. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  Google Scholar 

  7. Mattos-Costa, F. I.; de Lima-Neto, P.; Machado, S. A. S.; Avaca, L. A. Characterisation of surfaces modified by sol-gel derived RuxIr1–x O2 coatings for oxygen evolution in acid medium. Electrochim. Acta 1998, 44, 1515–1523.

    Article  Google Scholar 

  8. Over, H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem. Rev. 2012, 112, 3356–3426.

    Article  Google Scholar 

  9. Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.

    Article  Google Scholar 

  10. Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670–8674.

    Article  Google Scholar 

  11. Cao, X. Y.; Wang, H. N.; Lu, S. F.; Chen, S.; Xiang, Y. An Ni–P/C electro-catalyst with improved activity for the carbohydrazide oxidation reaction. RSC Adv. 2016, 6, 91956–91959.

    Article  Google Scholar 

  12. Wang, H. N.; Cao, D.; Xiang, Y.; Liang, D. W.; Lu, S. F. Novel Pd-decorated amorphous Ni–B/C catalysts with enhanced oxygen reduction reaction activities in alkaline media. RSC Adv. 2014, 4, 51126–51132.

    Article  Google Scholar 

  13. Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobaltphosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

    Article  Google Scholar 

  14. Song, H.; Dai, M.; Song, H. L.; Wan, X.; Xu, X. W.; Jin, Z. S. A solution-phase synthesis of supported Ni2P catalysts with high activity for hydrodesulfurization of dibenzothiophene. J. Mol. Catal. A-Chem. 2014, 385, 149–159.

    Article  Google Scholar 

  15. Oyama, S. T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides. J. Catal. 2003, 216, 343–352.

    Article  Google Scholar 

  16. Mi, K.; Ni, Y. H.; Hong, J. M. Solvent-controlled syntheses of Ni12P5 and Ni2P nanocrystals and photocatalytic property comparison. J. Phys. Chem. Solids 2011, 72, 1452–1456.

    Article  Google Scholar 

  17. Ni, Y. H.; Liao, K. M.; Li, J. In situ template route for synthesis of porous Ni12P5 superstructures and their applications in environmental treatments. CrystEngComm 2010, 12, 1568–1575.

    Article  Google Scholar 

  18. Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878.

    Article  Google Scholar 

  19. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  Google Scholar 

  20. Paseka, I. Hydrogen evolution reaction on Ni-P alloys: The internal stress and the activities of electrodes. Electrochim. Acta 2008, 53, 4537–4543.

    Article  Google Scholar 

  21. Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 2014, 8, 8121–8129.

    Article  Google Scholar 

  22. Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686–14693.

    Article  Google Scholar 

  23. Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

    Article  Google Scholar 

  24. Wu, J. B.; Li, P. P.; Pan, Y. T.; Warren, S.; Yin, X.; Yang, H. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 2012, 41, 8066–8074.

    Article  Google Scholar 

  25. Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial growth of hybrid core–shell nanostructures with large lattice mismatches. Science 2010, 327, 1634–1638.

    Article  Google Scholar 

  26. Duan, S. B.; Wang, R. M. Au/Ni12P5 core/shell nanocrystals from bimetallic heterostructures: In situ synthesis, evolution and supercapacitor properties. NPG Asia Mater. 2014, 6, e122.

    Article  Google Scholar 

  27. Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. 25th anniversary article: Exploring nanoscaled matter from speciation to phase diagrams: Metal phosphide nanoparticles as a case of study. Adv. Mater. 2014, 26, 371–389.

    Article  Google Scholar 

  28. Franke, R. X-ray absorption and photoelectron spectroscopy investigation of binary nickel phosphides. Spectrochim. Acta A-Mol. Biomol. Spectrosc. 1997, 53, 933–941.

    Article  Google Scholar 

  29. Wu, S. K.; Lai, P. C.; Lin, Y. C. Atmospheric hydrodeoxygenation of guaiacol over nickel phosphide catalysts: Effect of phosphorus composition. Catal. Lett. 2014, 144, 878–889.

    Article  Google Scholar 

  30. Franke, R.; Chassé, T.; Streubel, P.; Meisel, A. Auger parameters and relaxation energies of phosphorus in solid compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 56, 381–388.

    Article  Google Scholar 

  31. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  32. Su, X. R.; Xu, Y. Y.; Liu, J. L.; Wang, R. M. Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electrochemical properties. CrystEngComm 2015, 17, 4859–4864.

    Article  Google Scholar 

  33. Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

    Article  Google Scholar 

  34. Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.

    Article  Google Scholar 

  35. Hu, J. M.; Zhang, J. Q.; Cao, C. N. Oxygen evolution reaction on IrO2-based DSA® type electrodes: Kinetics analysis of Tafel lines and EIS. Int. J. Hydrogen Energy 2004, 29, 791–797.

    Article  Google Scholar 

  36. Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

    Google Scholar 

  37. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  38. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  39. Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

    Article  Google Scholar 

  40. Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.

    Google Scholar 

  41. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11674023, 51371015, 51331002, and 51501004), the Beijing Municipality Natural Science Foundation (No. 2142018), and the Fundamental Research Funds for the Central Universities (No. FRF-BR-15-023A). We would like to thank Prof. Feng Yuanping at Centre for Advanced 2D Materials and Graphene Research of NUS for discussions on computing results. We also thank the National Supercomputing Centre Singapore for providing the computing resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongming Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Duan, S., Li, H. et al. Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst. Nano Res. 10, 3103–3112 (2017). https://doi.org/10.1007/s12274-017-1527-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1527-1

Keywords

Navigation