Skip to main content
Log in

Water on silicene: A hydrogen bond-autocatalyzed physisorption–chemisorption–dissociation transition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A single water molecule is nothing special. However, macroscopic water displays many anomalous properties at interfaces, such as hydrophobicity and hydrophilicity. Although the underlying mechanisms remain elusive, hydrogen bonds between water molecules are expected to play a major role in these interesting phenomena. An important question concerns whether water clusters containing few molecules are qualitatively different from a single molecule. Using the water adsorption behavior as an example and by carefully choosing two-dimensional silicene as the substrate material, we demonstrate that water monomers, dimers, and trimers show distinct adsorption properties at the substrate surface. On silicene, the additional water molecules in dimers and trimers induce a transition from physisorption to chemisorption and then to dissociation, arising from the enhancement of charge transfer and proton transfer processes induced by hydrogen bonding. Such a hydrogen bond autocatalytic effect is expected to have broad applications in metal-free catalysis for the oxygen reduction reaction and water dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thiel, P. A.; Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 1987, 7, 211–385.

    Article  Google Scholar 

  2. Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1–308.

    Article  Google Scholar 

  3. Verdaguer, A.; Sacha, G. M.; Bluhm, H.; Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478–1510.

    Article  Google Scholar 

  4. Somasundaran, P.; Fuerstenau, D. W. Mechanisms of alkyl sulfonate adsorption at the alumina–water interface. J. Phys. Chem. 1966, 70, 90–96.

    Article  Google Scholar 

  5. Hass, K. C.; Schneider, W. F.; Curioni, A.; Andreoni, W. The chemistry of water on alumina surfaces: Reaction dynamics from first principles. Science 1998, 282, 265–268.

    Article  Google Scholar 

  6. Zhang, L. N.; Tian, C. S.; Waychunas, G. A.; Shen, Y. R. Structures and charging of a-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy. J. Am. Chem. Soc. 2008, 130, 7686–7694.

    Article  Google Scholar 

  7. Michaelides, A.; Hu, P. Catalytic water formation on platinum: A first-principles study. J. Am. Chem. Soc. 2001, 123, 4235–4242.

    Article  Google Scholar 

  8. Ogasawara, H.; Brena, B.; Nordlund, D.; Nyberg, M.; Pelmenschikov, A.; Pettersson, L. G. M.; Nilsson, A. Structure and bonding of water on Pt(111). Phys. Rev. Lett. 2002, 89, 276102.

    Article  Google Scholar 

  9. Michaelides, A.; Ranea, V. A.; de Andres, P. L.; King, D. A. General model for water monomer adsorption on closepacked transition and noble metal surfaces. Phys. Rev. Lett. 2003, 90, 216102.

    Article  Google Scholar 

  10. McCarthy, M. I.; Schenter, G. K.; Scamehorn, C. A.; Nicholas, J. B. Structure and dynamics of the water/MgO interface. J. Phys. Chem. 1996, 100, 16989–16995.

    Article  Google Scholar 

  11. Giordano, L.; Goniakowski, J.; Suzanne, J. Partial dissociation of water molecules in the (3×2) water monolayer deposited on the MgO (100) surface. Phys. Rev. Lett. 1998, 81, 1271.

    Article  Google Scholar 

  12. Shin, H.-J.; Jung, J.; Motobayashi, K.; Yanagisawa, S.; Morikawa, Y.; Kim, Y.; Kawai, M. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nat. Mater. 2010, 9, 442–447.

    Article  Google Scholar 

  13. Brookes, I. M.; Muryn, C. A.; Thornton, G. Imaging water dissociation on TiO2 (110). Phys. Rev. Lett. 2001, 87, 266103.

    Article  Google Scholar 

  14. Schaub, R.; Thostrup, P.; Lopez, N.; Lgsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Besenbacher, F. Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110). Phys. Rev. Lett. 2001, 87, 266104.

    Article  Google Scholar 

  15. Onda, K.; Li, B.; Zhao, J.; Jordan, K. D.; Yang, J. L.; Petek, H. Wet electrons at the H2O/TiO2 (110) surface. Science 2005, 308, 1154–1158.

    Article  Google Scholar 

  16. Shiotari, A.; Hatta, S.; Okuyama, H.; Aruga, T. Role of hydrogen bonding in the catalytic reduction of nitric oxide. Chem. Sci. 2014, 5, 922–926.

    Article  Google Scholar 

  17. Yang, W. S.; Wei, D.; Jin, X. C.; Xu, C. B.; Geng, Z. H.; Guo, Q.; Ma, Z. B.; Dai, D. X.; Fan, H. J.; Yang, X. M. Effect of the hydrogen bond in photoinduced water dissociation: A double-edged sword. J. Phys. Chem. Lett. 2016, 7, 603–608.

    Article  Google Scholar 

  18. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  Google Scholar 

  19. Osada, M.; Sasaki, T. Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 2012, 24, 210–228.

    Article  Google Scholar 

  20. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  21. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Article  Google Scholar 

  22. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  23. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  24. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109.

    Article  Google Scholar 

  25. Guzmán-Verri, G. G.; Voon, L. C. L. Y. Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007, 76, 075131

    Article  Google Scholar 

  26. Cahangirov, S.; Topsakal, M.; Aktürk, E.; Sahin, H.; Ciraci, S. Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    Article  Google Scholar 

  27. Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.

    Article  Google Scholar 

  28. Kara, A.; Enriquez, H.; Seitsonend, A. P.; Voone, L. C. L. Y.; Vizzini, S.; Aufrayg, B.; Oughaddoub, H. A review on silicene—New candidate for electronics. Surf. Sci. Rep. 2012, 67, 1–18.

    Google Scholar 

  29. Ornes, S. Core concept: Silicene. Proc. Natl. Acad. Sci. USA 2014, 111, 10899.

    Article  Google Scholar 

  30. Grazianetti, C.; Cinquanta, E.; Molle, A. Two-dimensional silicon: The advent of silicene. 2D Mater. 2016, 3, 012001.

    Article  Google Scholar 

  31. Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414–4421.

    Article  Google Scholar 

  32. Li, L. F.; Lu, S.-Z.; Pan, J. B.; Qin, Z. H.; Wang, Y.-Q.; Wang, Y. L.; Cao, C.-Y.; Du, S. X.; Gao, H.-J. Buckled germanene formation on Pt (111). Adv. Mater. 2014, 26, 4820–4824.

    Article  Google Scholar 

  33. Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.

    Article  Google Scholar 

  34. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  35. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  Google Scholar 

  36. Qiao, J. S.; Kong, X. H.; Hu, Z.-X.; Yang, F.; Ji, W. Highmobility transport anisotropy and linear dichroism in fewlayer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Google Scholar 

  37. Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

    Article  Google Scholar 

  38. Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    Article  Google Scholar 

  39. Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z.-Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.

    Article  Google Scholar 

  40. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  41. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  42. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

    Article  Google Scholar 

  43. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  Google Scholar 

  44. Kimmel, G. A.; Matthiesen, J.; Baer, M.; Mundy, C. J.; Petrik, N. G.; Smith, R. S.; Dohnálek, Z.; Kay, B. D. No confinement needed: Observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 2009, 131, 12838–12844.

    Article  Google Scholar 

  45. Yavari, F.; Kritzinger, C.; Gaire, C.; Song, L.; Gullapalli, H.; Borca-Tasciuc, T.; Ajayan, P. M.; Koratkar, N. Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 2010, 6, 2535–2538.

    Article  Google Scholar 

  46. Qu, L. T.; Liu, Y.; Baek, J.-B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    Article  Google Scholar 

  47. Cao, P. G.; Varghese, J. O.; Xu, K.; Heath, J. R. Visualizing local doping effects of individual water clusters on gold(111)-supported graphene. Nano Lett. 2012, 12, 1459–1463.

    Article  Google Scholar 

  48. Feng, X.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 2012, 134, 5662–5668.

    Article  Google Scholar 

  49. Kostov, M. K.; Santiso, E. E.; George, A. M.; Gubbins, K. E.; Nardelli, M. B. Dissociation of water on defective carbon substrates. Phys. Rev. Lett. 2005, 95, 136105.

    Article  Google Scholar 

  50. Ribeiro, R. M.; Peres, N. M. R.; Coutinho, J.; Briddon, P. R. Inducing energy gaps in monolayer and bilayer graphene: Local density approximation calculations. Phys. Rev. B 2008, 78, 075442.

    Article  Google Scholar 

  51. Leenaerts, O.; Partoens, B.; Peeters, F. M. CO, NO, and NOon graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416.

    Article  Google Scholar 

  52. Leenaerts, O.; Partoens, B.; Peeters, F. M. Water on graphene: Hydrophobicity and dipole moment using density functional theory. Phys. Rev. B 2009, 79, 235440.

    Article  Google Scholar 

  53. Sanyal, B.; Eriksson, O.; Jansson, U.; Grennberg, H. Molecular adsorption in graphene with divacancy defects. Phys. Rev. B 2009, 79, 113409.

    Article  Google Scholar 

  54. Li, X.; Feng, J.; Wang, E. G.; Meng, S.; Klimes, J.; Michaelides, A. Influence of water on the electronic structure of metal-supported graphene: Insights from van der Waals density functional theory. Phys. Rev. B 2012, 85, 085425.

    Article  Google Scholar 

  55. Miao, X. C.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F. High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745–2750.

    Article  Google Scholar 

  56. Hu, W.; Li, Z. Y.; Yang, J. L. Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite. J. Chem. Phys. 2013, 139, 154704.

    Article  Google Scholar 

  57. Drummond, N. D.; Zólyomi, V.; Fal’ko, V. I. Electrically tunable band gap in silicene. Phys. Rev. B 2012, 85, 075423.

    Article  Google Scholar 

  58. Wang, X.-Q.; Li, H.-D.; Wang, J.-T. Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Phys. Chem. Chem. Phys. 2012, 14, 3031–3036.

    Article  Google Scholar 

  59. Liu, C.-C.; Feng, W. X.; Yao, Y. G. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

    Article  Google Scholar 

  60. Xu, C. Y.; Luo, G. F.; Liu, Q. H.; Zheng, J. X.; Zhang, Z. M.; Nagase, S.; Gao, Z. X.; Lu, J. Giant magnetoresistance in silicene nanoribbons. Nanoscale 2012, 4, 3111–3117.

    Article  Google Scholar 

  61. Chen, L.; Feng, B. J.; Wu, K. H. Observation of a possible superconducting gap in silicene on Ag (111) surface. Appl. Phys. Lett. 2013, 102, 081602.

    Article  Google Scholar 

  62. Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

    Article  Google Scholar 

  63. Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 2012, 12, 3507–3511.

    Article  Google Scholar 

  64. Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike twodimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

    Article  Google Scholar 

  65. Chen, L.; Liu, C.-C.; Feng, B. J.; He, X. Y.; Cheng, P.; Ding, Z. J.; Meng, S.; Yao, Y. G.; Wu, K. H. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 2012, 109, 056804.

    Article  Google Scholar 

  66. Chen, L.; Li, H.; Feng, B. J.; Ding, Z. J.; Qiu, J. L.; Cheng, P.; Wu, K. H.; Meng, S. Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. Phys. Rev. Lett. 2013, 110, 085504.

    Article  Google Scholar 

  67. Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir (111). Nano Lett. 2013, 13, 685–690.

    Article  Google Scholar 

  68. Lin, X. Q.; Ni, J. Much stronger binding of metal adatoms to silicene than to graphene: A first-principles study. Phys. Rev. B 2012, 86, 075440.

    Article  Google Scholar 

  69. Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F. M. Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties. Phys. Rev. B 2013, 87, 085444.

    Article  Google Scholar 

  70. Sahin, H.; Peeters, F. M. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys. Rev. B 2013, 87, 085423.

    Article  Google Scholar 

  71. Tritsaris, G. A.; Kaxiras, E.; Meng, S.; Wang, E. G. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 2013, 13, 2258–2263.

    Article  Google Scholar 

  72. Wang, J.; Li, J. B.; Li, S.-S.; Liu, Y. Hydrogen storage by metalized silicene and silicane. J. Appl. Phys. 2013, 114, 124309.

    Article  Google Scholar 

  73. Li, C.; Yang, S. X.; Li, S.-S.; Xia, J.-B.; Li, J. B. Audecorated silicene: Design of a high-activity catalyst toward CO oxidation. J. Phys. Chem. C 2013, 117, 483–488.

    Article  Google Scholar 

  74. Huang, B.; Xiang, H. J.; Wei, S.-H. Chemical functionalization of silicene: Spontaneous structural transition and exotic electronic properties. Phys. Rev. Lett. 2013, 111, 145502.

    Article  Google Scholar 

  75. Özçelik, V. O.; Ciraci, S. Local reconstructions of silicene induced by adatoms. J. Phys. Chem. C 2013, 117, 26305–26315.

    Article  Google Scholar 

  76. Hu, W.; Wu, X. J.; Li, Z. Y.; Yang, J. L. Porous silicene as a hydrogen purification membrane. Phys. Chem. Chem. Phys. 2013, 15, 5753–5757.

    Article  Google Scholar 

  77. Hu, W.; Wu, X. J.; Li, Z. Y.; Yang, J. L. Helium separation via porous silicene based ultimate membrane. Nanoscale 2013, 5, 9062–9066.

    Article  Google Scholar 

  78. Hu, W.; Xia, N.; Wu, X.; Li, Z.; Yang, J. Silicene as a highly sensitive molecule sensor for NH3, NO and NO2. Phys. Chem. Chem. Phys. 2014, 16, 6957–6962.

    Article  Google Scholar 

  79. Feng, J. W.; Liu, Y. J.; Wang, H. X.; Zhao, J. X.; Cai, Q. H.; Wang, X. Z. Gas adsorption on silicene: A theoretical study. Comp. Mater. Sci. 2014, 87, 218–226.

    Article  Google Scholar 

  80. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  81. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  82. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    Article  Google Scholar 

  83. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.

    Article  Google Scholar 

  84. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 2006, 36, 354–360.

    Article  Google Scholar 

  85. Nose, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511.

    Article  Google Scholar 

  86. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.

    Article  Google Scholar 

  87. Baskin, Y.; Mayer, L. Lattice constants of graphite at low temperatures. Phys. Rev. 1955, 100, 544.

    Article  Google Scholar 

  88. Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 2004, 69, 155406.

    Article  Google Scholar 

  89. Mapasha, R. E.; Ukpong, A. M.; Chetty, N. Ab initio studies of hydrogen adatoms on bilayer graphene. Phys. Rev. B 2012, 85, 205402.

    Article  Google Scholar 

  90. Hu, W.; Li, Z. Y.; Yang, J. L. Diamond as an inert substrate of graphene. J. Chem. Phys. 2013, 138, 054701.

    Article  Google Scholar 

  91. Carter, D. J.; Rohl, A. L. Noncovalent interactions in SIESTA using the vdW-DF functional: S22 benchmark and macrocyclic structures. J. Chem. Theory Comput. 2012, 8, 281–289.

    Article  Google Scholar 

  92. Hermann, A.; Schmidt, W. G.; Schwerdtfeger, P. Resolving the optical spectrum of water: Coordination and electrostatic effects. Phys. Rev. Lett. 2008, 100, 207403.

    Article  Google Scholar 

  93. Xia, W. Q.; Hu, W.; Li, Z. Y.; Yang, J. L. A first-principles study of gas adsorption on germanene. Phys. Chem. Chem. Phys. 2014, 16, 22495–22498.

    Google Scholar 

  94. Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Castro Neto, A. H. Oxygen defects in phosphorene. Phys. Rev. Lett. 2015, 114, 046801.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is partially supported by the National Key Research & Development Program of China (No. 2016YFA0200604), National Natural Science Foundation of China (Nos. 21233007, 21421063, and 21688102), and Chinese Academy of Sciences (No. XDB01020300). This work is also partially supported by the Scientific Discovery through Advanced Computing (SciDAC) Program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences (W. H.). We thank the National Energy Research Scientific Computing (NERSC) center, and the USTCSCC, SC-CAS, Tianjin, and Shanghai Supercomputer Centers for the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Hu or Jinlong Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Li, Z. & Yang, J. Water on silicene: A hydrogen bond-autocatalyzed physisorption–chemisorption–dissociation transition. Nano Res. 10, 2223–2233 (2017). https://doi.org/10.1007/s12274-016-1411-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1411-4

Keywords

Navigation