Skip to main content

Advertisement

Log in

Laser-based in situ embedding of metal nanoparticles into bioextruded alginate hydrogel tubes enhances human endothelial cell adhesion

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

Alginate is a widely used hydrogel in tissue engineering owing to its simple and non-cytotoxic gelation process, ease of use, and abundance. However, unlike hydrogels derived from mammalian sources such as collagen, alginate does not contain cell adhesion ligands. Here, we present a novel laser ablation technique for the in situ embedding of gold and iron nanoparticles into hydrogels. We hypothesized that integration of metal nanoparticles in alginate could serve as an alternative material because of its chemical biofunctionalization ability (coupling of RGD ligands) to favor cell adhesion. Cytocompatibility and biofunctionality of the gels were assessed by cell culture experiments using fibroblasts and endothelial cells. Nanoparticles with an average particle size of 3 nm (gold) and 6 nm (iron) were generated and stably maintained in alginate for up to 6 months. Using an extrusion system, several centimeter-long alginate tubes with an outer diameter of approximately 3 mm and a wall thickness of approximately 150 μm were manufactured. Confocal microscopy revealed homogeneously distributed nanoparticle agglomerates over the entire tube volume. Endothelial cells seeded on iron-loaded gels showed significantly higher viability and an increased degree of spreading, and the number of attached cells was also elevated in comparison to the control and gold-loaded alginates. We conclude that laser-based in situ integration of iron nanoparticles (⩽0.01 wt.%) in alginate is a straightforward method to generate composite materials that favor the adhesion of endothelial cells. In addition, we show that nanoparticle integration does not impair the alginate’s gelation and 3D biofabrication properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer, R.; Vacanti, J. P. Tissue engineering. Science 1993, 260, 920–926.

    Article  Google Scholar 

  2. Vacanti, C. A.; Vacanti, J. P. The science of tissue engineering. Orthop. Clin. North Am. 2000, 31, 351–355.

    Article  Google Scholar 

  3. Malda, J.; Visser, J.; Melchels, F. P.; Jüngst, T.; Hennink, W. E.; Dhert, W. J. A.; Groll, J.; Hutmacher, D. W. 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mater. 2013, 25, 5011–5028.

    Article  Google Scholar 

  4. Murphy, S. V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785.

    Article  Google Scholar 

  5. Henkel, J.; Hutmacher, D. W. Design and fabrication of scaffold-based tissue engineering. BioNanoMaterials 2013, 14, 171–193.

    Article  Google Scholar 

  6. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23.

    Article  Google Scholar 

  7. Drury, J. L.; Mooney, D. J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351.

    Article  Google Scholar 

  8. Tritz, J.; Rahouadj, R.; de Isla, N.; Charif, N.; Pinzano, A.; Mainard, D.; Bensoussan, D.; Netter, P.; Stoltz, J.-F.; Benkirane-Jessel, N. et al. Designing a three-dimensional alginate hydrogel by spraying method for cartilage tissue engineering. Soft Matter 2010, 6, 5165–5174.

    Article  Google Scholar 

  9. Kuo, C. K.; Ma, P. X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001, 22, 511–521.

    Article  Google Scholar 

  10. Drury, J. L.; Dennis, R. G.; Mooney, D. J. The tensile properties of alginate hydrogels. Biomaterials 2004, 25, 3187–3199.

    Article  Google Scholar 

  11. Rowley, J. A.; Madlambayan, G.; Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20, 45–53.

    Article  Google Scholar 

  12. Augst, A. D.; Kong, H. J.; Mooney, D. J. Alginate hydrogels as biomaterials. Macromol. Biosci. 2006, 6, 623–633.

    Article  Google Scholar 

  13. Hess, C.; Schwenke, A.; Wagener, P.; Franzka, S.; Laszlo Sajti, C.; Pflaum, M.; Wiegmann, B.; Haverich, A.; Barcikowski, S. Dose-dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites. J. Biomed. Mater. Res. A 2014, 102, 1909–1920.

    Article  Google Scholar 

  14. Hung, H. S.; Wu, C. C.; Chien, S.; Hsu, S. H. The behavior of endothelial cells on polyurethane nanocomposites and the associated signaling pathways. Biomaterials 2009, 30, 1502–1511.

    Article  Google Scholar 

  15. Hsu, S. H.; Tang, C. M.; Tseng, H. J. Biocompatibility of poly(ether) urethane-gold nanocomposites. J. Biomed. Mater. Res. A 2006, 79, 759–770.

    Article  Google Scholar 

  16. Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 2010, 26, 2885–2893.

    Article  Google Scholar 

  17. Anh, N. T.; Van Phu, D.; Duy, N. N.; Du, B. D.; Hien, N. Q. Synthesis of alginate stabilized gold nanoparticles by γ-irradiation with controllable size using different Au3+ concentration and seed particles enlargement. Radiat. Phys. Chem. 2010, 79, 405–408.

    Article  Google Scholar 

  18. Barcikowski, S.; Compagnini, G. Advanced nanoparticle generation and excitation by lasers in liquids. Phys. Chem. Chem. Phys. 2013, 15, 3022–3026.

    Article  Google Scholar 

  19. Amendola, V.; Meneghetti, M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 2009, 11, 3805–3821.

    Article  Google Scholar 

  20. Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013, 15, 3027–3046.

    Article  Google Scholar 

  21. Zhang, D. S.; Barcikowski, S. Rapid nanoparticle-polymer composites prototyping by laser ablation in liquids. In Encyclopedia of Polymeric Nanomaterials. Kobayashi, S.; Müllen, K., Eds.; Springer: Berlin Heidelberg, 2015; pp 2131–2141.

  22. Rehbock, C.; Jakobi, J.; Gamrad, L.; van der Meer, S.; Tiedemann, D.; Taylor, U.; Kues, W.; Rath, D.; Barcikowski, S. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nanotoxicological assays. Beilstein J. Nanotechnol. 2014, 5, 1523–1541.

    Article  Google Scholar 

  23. Wang, J.; Pantopoulos, K. Regulation of cellular iron metabolism. Biochem. J. 2011, 434, 365–381.

    Article  Google Scholar 

  24. Chen, C.; Paw, B. H. Cellular and mitochondrial iron homeostasis in vertebrates. Biochim. Biophys. Acta 2012, 1823, 1459–1467.

    Article  Google Scholar 

  25. Koo, S. W.; Casper, K. A.; Otto, K. B.; Gira, A. K.; Swerlick, R. A. Iron chelators inhibit VCAM-1 expression in human dermal microvascular endothelial cells. J. Invest. Dermatol. 2003, 120, 871–879.

    Article  Google Scholar 

  26. Wei, M. Q.; Wen, D. D.; Wang, X. Y.; Huan, Y.; Yang, Y.; Xu, J.; Cheng, K.; Zheng, M. W. Experimental study of endothelial progenitor cells labeled with superparamagnetic iron oxide in vitro. Mol. Med. Rep. 2015, 11, 3814–3819.

    Google Scholar 

  27. Horniblow, R. D.; Dowle, M.; Iqbal, T. H.; Latunde-Dada, G. O.; Palmer, R. E.; Pikramenou, Z.; Tselepis, C. Alginateiron speciation and its effect on in vitro cellular iron metabolism. PLoS One 2015, 10, e0138240.

    Article  Google Scholar 

  28. Blaeser, A.; Campos, D. F. D.; Köpf, M.; Weber, M.; Fischer, H. Assembly of thin-walled, cell-laden hydrogel conduits inflated with perfluorocarbon. RSC Adv. 2014, 4, 46460–46469.

    Article  Google Scholar 

  29. Wagener, P.; Schwenke, A.; Chichkov, B. N.; Barcikowski, S. Pulsed laser ablation of zinc in tetrahydrofuran: Bypassing the cavitation bubble. J. Phys. Chem. C 2010, 114, 7618–7625.

    Article  Google Scholar 

  30. Tiedemann, D.; Taylor, U.; Rehbock, C.; Jakobi, J.; Klein, S.; Kues, W. A.; Barcikowski, S.; Rath, D. Reprotoxicity of gold, silver, and gold–silver alloy nanoparticles on mammalian gametes. Analyst 2014, 139, 931–942.

    Article  Google Scholar 

  31. Klein, S.; Petersen, S.; Taylor, U.; Rath, D.; Barcikowski, S. Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy. J. Biomed. Opt. 2010, 15, 036015.

    Article  Google Scholar 

  32. Jain, T. K.; Morales, M. A.; Sahoo, S. K.; Leslie-Pelecky, D. L.; Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. 2005, 2, 194–205.

    Article  Google Scholar 

  33. Moreira, R.; Velz, T.; Alves, N.; Gesche, V. N.; Malischewski, A.; Schmitz-Rode, T.; Frese, J.; Jockenhoevel, S.; Mela, P. Tissue-engineered heart valve with a tubular leaflet design for minimally invasive transcatheter implantation. Tissue Eng. Part C Methods 2015, 21, 530–540.

    Article  Google Scholar 

  34. Tsuji, T.; Thang, D. H.; Okazaki, Y.; Nakanishi, M.; Tsuboi, Y.; Tsuji, M. Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci. 2008, 254, 5224–5230.

    Article  Google Scholar 

  35. Menéndez-Manjón, A.; Wagener, P.; Barcikowski, S. Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids. J. Phys. Chem. C 2011, 115, 5108–5114.

    Article  Google Scholar 

  36. Jeon, J. S.; Yeh, C. S. Studies of silver nanoparticles by laser ablation method. J. Chin. Chem. Soc. 1998, 45, 721–726.

    Article  Google Scholar 

  37. Blaeser, A.; Duarte Campos, D. F.; Puster, U.; Richtering, W.; Stevens, M. M.; Fischer, H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv. Healthc. Mater. 2016, 5, 326–333.

    Article  Google Scholar 

  38. Baladi, A.; Mamoory, R. S. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles. Appl. Surf. Sci. 2010, 256, 7559–7564.

    Article  Google Scholar 

  39. Liu, Y. S.; Chen, S. M.; Zhong, L.; Wu, G. Z. Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat. Phys. Chem. 2009, 78, 251–255.

    Article  Google Scholar 

  40. Petersen, S.; Jakobi, J.; Hörtinger, A.; Barcikowski, S. In-situ conjugation–tailored nanoparticle-conjugates by laser ablation in liquids. J. Laser Micro Nanoen. 2009, 4, 71–74.

    Article  Google Scholar 

  41. Santra, S.; Kaittanis, C.; Grimm, J.; Perez, J. M. Drug/dyeloaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 2009, 5, 1862–1868.

    Article  Google Scholar 

  42. Hsu, S. H.; Tang, C. M.; Tseng, H. J. Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromolecules 2008, 9, 241–248.

    Article  Google Scholar 

  43. Strauß, S.; Neumeister, A.; Barcikowski, S.; Kracht, D.; Kuhbier, J. W.; Radtke, C.; Reimers, K.; Vogt, P. M. Adhesion, vitality and osteogenic differentiation capacity of adipose derived stem cells seeded on nitinol nanoparticle coatings. PLoS One 2013, 8, e53309.

  44. Wu, X.; Tan, Y.; Mao, H.; Zhang, M. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int. J. Nanomedicine 2010, 5, 385–399.

    Article  Google Scholar 

  45. Apopa, P. L.; Qian, Y.; Shao, R.; Guo, N. L.; Schwegler-Berry, D.; Pacurari, M.; Porter, D.; Shi, X. L.; Vallyathan, V.; Castranova, V. et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part. Fibre Toxicol. 2009, 6, 1.

    Article  Google Scholar 

  46. Gu, H. Y.; Chen, Z.; Sa, R. X.; Yuan, S. S.; Chen, H. Y.; Ding, Y. T.; Yu, A. M. The immobilization of hepatocytes on 24nm-sized gold colloid for enhanced hepatocytes proliferation. Biomaterials 2004, 25, 3445–3451.

    Article  Google Scholar 

  47. Barcikowski, S.; Hahn, A.; Guggenheim, M.; Reimers, K.; Ostendorf, A. Biocompatibility of nanoactuators: Stem cell growth on laser-generated nickel–titanium shape memory alloy nanoparticles. J. Nanopart. Res. 2010, 12, 1733–1742.

    Article  Google Scholar 

  48. Wagener, P.; Brandes, G.; Schwenke, A.; Barcikowski, S. Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites. Phys. Chem. Chem. Phys. 2011, 13, 5120–5126.

    Article  Google Scholar 

  49. Li, K.; Schneider, M. Quantitative evaluation and visualization of size effect on cellular uptake of gold nanoparticles by multiphoton imaging-UV/Vis spectroscopic analysis. J. Biomed. Opt. 2014, 19, 101505.

    Article  Google Scholar 

  50. Machida-Sano, I.; Matsuda, Y.; Namiki, H. In vitro adhesion of human dermal fibroblasts on iron cross-linked alginate films. Biomed. Mater. 2009, 4, 025008.

    Article  Google Scholar 

  51. Ahmed, E. M.; Aggor, F. S. Swelling kinetic study and characterization of crosslinked hydrogels containing silver nanoparticles. J. Appl. Polym. Sci. 2010, 117, 2168–2174.

    Article  Google Scholar 

  52. Calderwood, D. A.; Shattil, S. J.; Ginsberg, M. H. Integrins and actin filaments: Reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 2000, 275, 22607–22610.

    Article  Google Scholar 

  53. Pollard, T. D.; Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003, 112, 453–465.

    Article  Google Scholar 

  54. Defilippi, P.; Olivo, C.; Venturino, M.; Dolce, L.; Silengo, L.; Tarone, G. Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc. Res. Tech. 1999, 47, 67–78.

    Article  Google Scholar 

  55. Casals, E.; Pfaller, T.; Duschl, A.; Oostingh, G. J.; Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano 2010, 4, 3623–3632.

    Article  Google Scholar 

  56. Safi, M.; Courtois, J.; Seigneuret, M.; Conjeaud, H.; Berret, J. F. The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 2011, 32, 9353–9363.

    Article  Google Scholar 

  57. Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggård, T.; Flanagan, M. B.; Lynch, I.; Elia, G.; Dawson, K. The evolution of the protein corona around nanoparticles: A test study. ACS Nano 2011, 5, 7503–7509.

    Article  Google Scholar 

  58. Pozzi, D.; Caracciolo, G.; Digiacomo, L.; Colapicchioni, V.; Palchetti, S.; Capriotti, A. L.; Cavaliere, C.; Chiozzi, R. Z.; Puglisie, A.; Laganà, A. The biomolecular corona of nanoparticles in circulating biological media. Nanoscale 2015, 7, 13958–13966.

    Article  Google Scholar 

  59. Michel, S. A. A. X.; Knetsch, M. L. W.; Koole, L. H. Adsorption of albumin on flax fibers increases endothelial cell adhesion and blood compatibility in vitro. J. Biomater. Sci. Polym. Ed. 2014, 25, 698–712.

    Article  Google Scholar 

  60. Schwab, A. Function and spatial distribution of ion channels and transporters in cell migration. Am. J. Physiol. Renal. Physiol. 2001, 280, F739–F747.

    Google Scholar 

  61. Klausner, R. D.; Rouault, T. A.; Harford, J. B. Regulating the fate of mRNA: The control of cellular iron metabolism. Cell 1993, 72, 19–28.

    Article  Google Scholar 

  62. Hentze, M. W.; Muckenthaler, M. U.; Andrews, N. C. Balancing acts: Molecular control of mammalian iron metabolism. Cell 2004, 117, 285–297.

    Article  Google Scholar 

  63. Li, J.; Lin, F. Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol. 2011, 21, 489–497.

    Article  Google Scholar 

  64. Machida-Sano, I.; Hirakawa, M.; Matsumoto, H.; Kamada, M.; Ogawa, S.; Satoh, N.; Namiki, H. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels. Biomed. Mater. 2014, 9, 025007.

    Article  Google Scholar 

  65. Sowa-Söhle, E. N.; Schwenke, A.; Wagener, P.; Weiss, A.; Wiegel, H.; Sajti, C. L.; Haverich, A.; Barcikowski, S.; Loos, A. Antimicrobial efficacy, cytotoxicity, and ion release of mixed metal (Ag, Cu, Zn, Mg) nanoparticle polymer composite implant material. BioNanoMaterials 2013, 14, 217–227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Barcikowski.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2016_1218_MOESM1_ESM.pdf

Laser-based in situ embedding of metal nanoparticles into bioextruded alginate hydrogel tubes enhances human endothelial cell adhesion

Supplementary material, approximately 18.5 MB.

Supplementary material, approximately 13.6 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaeser, A., Million, N., Campos, D.F.D. et al. Laser-based in situ embedding of metal nanoparticles into bioextruded alginate hydrogel tubes enhances human endothelial cell adhesion. Nano Res. 9, 3407–3427 (2016). https://doi.org/10.1007/s12274-016-1218-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1218-3

Keywords