Skip to main content
Log in

One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multi-shelled CoFe2O4 hollow microspheres with a tunable number of layers (1–4) were successfully synthesized via a facile one-step method using cyclodextrin as a template, followed by calcination. The structural features, including the shell number and shell porosity, were controlled by adjusting the synthesis parameters to produce hollow spheres with excellent capacity and durability. This is a straightforward and general strategy for fabricating metal oxide or bimetallic metal oxide hollow microspheres with a tunable number of shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J. T.; Jiang, J. W.; Li, H. L.; Zhao, X. S. A highperformance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 2011, 4, 4009–4015.

    Article  Google Scholar 

  2. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    Article  Google Scholar 

  3. Lee, S. W.; Gallant, B. M.; Byon, H. R.; Hammond, P. T.; Shao-Horn, Y. Y. Nanostructured carbon-based electrodes: Bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ. Sci. 2011, 4, 1972–1985.

    Article  Google Scholar 

  4. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

    Article  Google Scholar 

  5. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  6. Tang, H. J.; Wang, J. Y.; Yin, H. J.; Zhao, H. J.; Wang, D.; Tang, Z. Y. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 2015, 27, 1117–1123.

    Article  Google Scholar 

  7. Lu, Z. Y.; Yang, Q.; Zhu, W.; Chang, Z.; Liu, J. F.; Sun, X. M.; Evans, D. G.; Duan, X. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 2012, 5, 369–378.

    Article  Google Scholar 

  8. Wu, Z. S.; Ren, W. C.; Wang, D. W.; Li, F.; Liu, B. L.; Cheng, H. M. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010, 4, 5835–5842.

    Article  Google Scholar 

  9. Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.

    Article  Google Scholar 

  10. Izadi-Najafabadi, A.; Yasuda, S.; Kobashi, K.; Yamada, T.; Futaba, D. N.; Hatori, H.; Yumura, M.; Iijima, S. Hata, K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater. 2010, 22, E235–E241.

    Article  Google Scholar 

  11. Caruso, F.; Caruso, R. A.; Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111–1114.

    Article  Google Scholar 

  12. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714.

    Article  Google Scholar 

  13. Yang, H. G.; Zeng, H. C. Self-construction of hollow SnO2 Octahedra based on two-dimensional aggregation of nanocrystallites. Angew. Chem., Int. Ed. 2004, 43, 5930–5933.

    Article  Google Scholar 

  14. Sun, X. M.; Li, Y. D. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem., Int. Ed. 2004, 43, 3827–3831.

    Article  Google Scholar 

  15. Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

    Article  Google Scholar 

  16. Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem., Int. Ed. 2010, 49, 4981–4985.

    Article  Google Scholar 

  17. Yang, G. H.; Tsubaki, N.; Shamoto, J.; Yoneyama, Y.; Zhang, Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. J. Am. Chem. Soc. 2010, 132, 8129–8136.

    Article  Google Scholar 

  18. Hung, L. I.; Tsung, C. K.; Huang, W. Y.; Yang, P. D. Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 2010, 22, 1910–1914.

    Article  Google Scholar 

  19. Ding, S. J.; Chen, J. S.; Qi, G. G.; Duan, X. N.; Wang, Z. Y.; Giannelis, E. P.; Archer, L. A.; Lou, X. W. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. J. Am. Chem. Soc. 2011, 133, 21–23.

    Article  Google Scholar 

  20. Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc. 2011, 133, 4738–4741.

    Article  Google Scholar 

  21. Qi, J.; Chen, J.; Li, G. D.; Li, S. X.; Gao, Y.; Tang, Z. Y. Facile synthesis of core–shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for COoxidation. Energy Environ. Sci. 2012, 5, 8937–8941.

    Article  Google Scholar 

  22. Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

    Article  Google Scholar 

  23. He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core–shell noble-metal@metalorganic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

    Article  Google Scholar 

  24. Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem.; Int. Ed. 2011, 50, 2738–2741.

    Article  Google Scholar 

  25. Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 6417–6420.

    Article  Google Scholar 

  26. Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

    Article  Google Scholar 

  27. Wang, J. Y.; Tang, H. J.; Ren, H.; Yu, R. B.; Qi, J.; Mao, D.; Zhao, H. J.; Wang, D. pH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv. Sci. 2014, 1, 1400011.

    Article  Google Scholar 

  28. Li, L.; Ma, R. Z.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Hollow nanoshell of layered double hydroxide. Chem. Commun. 2006, 3125–3127.

    Google Scholar 

  29. Wang, X.; Yu, L. J.; Wu, X. L.; Yuan, F. L.; Guo, Y. G.; Ma, Y.; Yao, J. N. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C 2009, 113, 15553–15558.

    Article  Google Scholar 

  30. Zhang, L.; Wu, H. B.; Lou, X. W. Metal–organic-frameworksderived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 2013, 135, 10664–10672.

    Article  Google Scholar 

  31. Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium–sulfur batteries. Nano Res. 2015, 8, 2663–2675.

    Article  Google Scholar 

  32. Du, H. M.; Jiao, L. F.; Wang, Q. H.; Yang, J. Q.; Guo, L. J.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Res. 2013, 6, 87–98.

    Article  Google Scholar 

  33. Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.

    Article  Google Scholar 

  34. Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282.

    Article  Google Scholar 

  35. Wang, Z.; Zhang, X.; Li, Y.; Liu Z. T.; Hao, Z. P. Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior. J. Mater. Chem. A 2013, 1, 6393–6399.

    Article  Google Scholar 

  36. He, P.; Yang, K.; Wang, W.; Dong, F. Q.; Du, L. C.; Deng, Y. Q. Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russ. J. Electrochem. 2013, 49, 359–364.

    Article  Google Scholar 

  37. Zhang, Y. X.; Li, F.; Huang, M. One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor. Mater. Lett. 2013, 112, 203–206.

    Article  Google Scholar 

  38. Cao, X. H.; Zheng, B.; Shi, W. H.; Yang, J.; Fan, Z. X.; Luo, Z. M.; Rui, X. H.; Chen, B.; Yan, Q. Y.; Zhang, H. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for allsolid- state flexible supercapacitors. Adv. Mater. 2015, 27, 4695–4701.

    Article  Google Scholar 

  39. Vijaya Sankar, K.; Kalai Selvan, R.; Meyrick, D. Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv. 2015, 5, 99959–99967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Jia, W., Jiang, M. et al. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 9, 2026–2033 (2016). https://doi.org/10.1007/s12274-016-1093-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1093-y

Keywords

Navigation