Skip to main content
Log in

Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a tumor treatment modality in which a tumorlocalized photosensitizer is excited with light, which results in local production of reactive oxygen species, destruction of tumor vasculature, tumor hypoxia, tumor cell death, and induction of an anti-tumor immune response. However, pre-existing tumor hypoxia may desensitize tumors to PDT by activating the hypoxia-inducible factor 1 (HIF-1) survival pathway. Therefore, we hypothesized that inhibition of HIF-1 with acriflavine (ACF) would exacerbate cell death in human epidermoid carcinoma (A431) cells. PDT of A431 tumor cells was performed using newly developed and optimized PEGylated cationic liposomes containing the photosensitizer zinc phthalocyanine (ZnPC). Molecular docking revealed that ACF binds to the dimerization domain of HIF-1α, and confocal microscopy confirmed translocation of ACF from the cytosol to the nucleus under hypoxia. HIF-1 was stabilized in hypoxic, but not normoxic, A431 cells following PDT. Inhibition of HIF-1 with ACF increased the extent of PDT-induced cell death under hypoxic conditions and reduced the expression of the HIF-1 target genes VEGF, PTGS2, and EDN1. Moreover, co-encapsulation of ACF in the aqueous core of ZnPC-containing liposomes yielded an adjuvant effect on PDT efficacy that was comparable to non-encapsulated ACF. In conclusion, HIF-1 contributes to A431 tumor cell survival following PDT with liposomal ZnPC. Inhibition of HIF-1 with free or liposomal ACF improves PDT efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Plaetzer, K.; Krammer, B.; Berlanda, J.; Berr, F.; Kiesslich, T. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers Med. Sci. 2009, 24, 259–268.

    Article  Google Scholar 

  2. Castano, A. P.; Mroz, P.; Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535–545.

    Article  Google Scholar 

  3. Pinthus, J. H.; Bogaards, A.; Weersink, R.; Wilson, B. C.; Trachtenberg, J. Photodynamic therapy for urological malignancies: Past to current approaches. J. Urol. 2006, 175, 1201–1207.

    Article  Google Scholar 

  4. Wildeman, M. A. M.; Nyst, H. J.; Karakullukcu, B.; Tan, B. I. Photodynamic therapy in the therapy for recurrent/persistent nasopharyngeal cancer. Head Neck Oncol. 2009, 1, 40.

    Article  Google Scholar 

  5. O’Connor, A. E.; Gallagher, W. M.; Byrne, A. T. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol. 2009, 85, 1053–1074.

    Article  Google Scholar 

  6. Weijer, R.; Broekgaarden, M.; Kos, M.; Vught, R.; Rauws, E. A. J.; van Gulik, T. M.; Storm, G.; Heger, M. Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 23, 103–131.

    Article  Google Scholar 

  7. Broekgaarden, M.; de Kroon, A. I. P. M.; van Gulik, T. M.; Heger, M. Development and in vitro proof-of-concept of interstitially targeted zinc-phthalocyanine liposomes for photodynamic therapy. Curr. Med. Chem. 2014, 21, 377–391.

    Article  Google Scholar 

  8. Aguilar, G.; Choi, B.; Broekgaarden, M.; Yang, O.; Yang, B.; Ghasri, P.; Chen, J. K.; Bezemer, R.; Nelson, J.; van Drooge, A. et al. An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains. Ann. Biomed. Eng. 2012, 40, 486–506.

    Article  Google Scholar 

  9. Deshpande, P. P.; Biswas, S.; Torchilin, V. P. Current trends in the use of liposomes for tumor targeting. Nanomedicine 2013, 8, DOI: 10.2217/nnm.13.118.

  10. Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001, 41, 189–207.

    Article  Google Scholar 

  11. Abu Lila, A. S.; Ishida, T.; Kiwada, H. Targeting anticancer drugs to tumor vasculature using cationic liposomes. Pharm. Res. 2010, 27, 1171–1183.

    Article  Google Scholar 

  12. Campbell, R. B.; Ying, B.; Kuesters, G. M.; Hemphill, R. Fighting cancer: From the bench to bedside using second generation cationic liposomal therapeutics. J. Pharm. Sci. 2009, 98, 411–429.

    Article  Google Scholar 

  13. Thurston, G.; McLean, J. W.; Rizen, M.; Baluk, P.; Haskell, A.; Murphy, T. J.; Hanahan, D.; McDonald, D. M. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Invest. 1998, 101, 1401–1413.

    Article  Google Scholar 

  14. Broekgaarden, M.; Weijer, R.; van Gulik, T. M.; Hamblin, M. R.; Heger, M. Tumor cell survival pathways activated by photodynamic therapy: A molecular basis for pharmacological inhibition strategies. Cancer Metast. Rev. 2015, 34, 643–690.

    Article  Google Scholar 

  15. Denko, N. C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 2008, 8, 705–713.

    Article  Google Scholar 

  16. Bracken, C. P.; Whitelaw, M. L.; Peet, D. J. The hypoxiainducible factors: Key transcriptional regulators of hypoxic responses. Cell. Mol. Life Sci. 2003, 60, 1376–1393.

    Article  Google Scholar 

  17. Rohwer, N.; Cramer, T. Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways. Drug. Resist. Updat. 2011, 14, 191–201.

    Article  Google Scholar 

  18. Meijer, T. W. H.; Kaanders, J. H. A. M.; Span, P. N.; Bussink, J. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin. Cancer Res. 2012, 18, 5585–5594.

    Article  Google Scholar 

  19. Mitra, S.; Cassar, S. E.; Niles, D. J.; Puskas, J. A.; Frelinger, J. G.; Foster, T. H. Photodynamic therapy mediates the oxygen-independent activation of hypoxia-inducible factor 1a. Mol. Cancer Ther. 2006, 5, 3268–3274.

    Article  Google Scholar 

  20. Krieg, R. C.; Raupach, K.; Ren, Q.; Schwamborn, K.; Knuechel, R. Analyzing effects of photodynamic therapy with 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PPIX) in urothelial cells using reverse phase protein arrays. Photochem. Photobiol. Sci. 2007, 6, 1296–1305.

    Article  Google Scholar 

  21. Ferrario, A.; Gomer, C. J. Targeting the 90 kDa heat shock protein improves photodynamic therapy. Cancer Lett. 2010, 289, 188–194.

    Article  Google Scholar 

  22. Ferrario, A.; Gomer, C. Avastin enhances photodynamic therapy treatment of Kaposi's sarcoma in a mouse tumor model. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 251–260.

    Article  Google Scholar 

  23. Ferrario, A.; von Tiehl, K.; Wong, S.; Luna, M.; Gomer, C. J. Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response. Cancer Res. 2002, 62, 3956–3961.

    Google Scholar 

  24. Ji, Z. Y.; Yang, G. R.; Shahzidi, S.; Tkacz-Stachowska, K.; Suo, Z. H.; Nesland, J. M.; Peng, Q. Induction of hypoxiainducible factor-1a overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy. Cancer Lett. 2006, 244, 182–189.

    Article  Google Scholar 

  25. Koukourakis, M. I.; Giatromanolaki, A.; Skarlatos, J.; Corti, L.; Blandamura, S.; Piazza, M.; Gatter, K. C.; Harris, A. L. Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy. Cancer Res. 2001, 61, 1830–1832.

    Google Scholar 

  26. Semenza, G. L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 2012, 33, 207–214.

    Article  Google Scholar 

  27. Ratcliffe, P. J. Oxygen sensing and hypoxia signalling pathways in animals: The implications of physiology for cancer. J. Physiol. 2013, 591, 2027–2042.

    Article  Google Scholar 

  28. Salceda, S.; Caro, J. Hypoxia-inducible factor 1a (HIF-1a) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. J. Biol. Chem. 1997, 272, 22642–22647.

    Article  Google Scholar 

  29. Maxwell, P. H.; Wiesener, M. S.; Chang, G.-W.; Clifford, S. C.; Vaux, E. C.; Cockman, M. E.; Wykoff, C. C.; Pugh, C. W.; Maher, E. R.; Ratcliffe, P. J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygendependent proteolysis. Nature 1999, 399, 271–275.

    Article  Google Scholar 

  30. Chilov, D.; Camenisch, G.; Kvietikova, I.; Ziegler, U.; Gassmann, M.; Wenger, R. H. Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): Heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. J. Cell Sci. 1999, 112, 1203–1212.

    Google Scholar 

  31. Lu, H. S.; Dalgard, C. L.; Mohyeldin, A.; McFate, T.; Tait, A. S.; Verma, A. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J. Biol. Chem. 2005, 280, 41928–41939.

    Article  Google Scholar 

  32. Schofield, C. J.; Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 2004, 5, 343–354.

    Article  Google Scholar 

  33. Schödel, J.; Oikonomopoulos, S.; Ragoussis, J.; Pugh, C. W.; Ratcliffe, P. J.; Mole, D. R. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 2011, 117, e207–e217.

    Article  Google Scholar 

  34. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003, 3, 721–732.

    Article  Google Scholar 

  35. Bellot, G.; Garcia-Medina, R.; Gounon, P.; Chiche, J.; Roux, D.; Pouysségur, J.; Mazure, N. M. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 2009, 29, 2570–2581.

    Article  Google Scholar 

  36. Lee, K.; Zhang, H. F.; Qian, D. Z.; Rey, S.; Liu, J. O.; Semenza, G. L. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl. Acad. Sci. USA 2009, 106, 17910–17915.

    Article  Google Scholar 

  37. Rouser, G.; Fleischer, S.; Yamamoto, A. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 1970, 5, 494–496.

    Article  Google Scholar 

  38. Lasch, J.; Weissig, V.; Brandl, M. Preparation of liposomes. In Liposomes, 2nd ed.; Torchilin, V. P.; Weissing, V., Eds.; Oxford University Press: New York, 2003; pp 3–29.

    Google Scholar 

  39. Kloek, J. J.; Maréchal, X.; Roelofsen, J.; Houtkooper, R. H.; van Kuilenburg, A. B.; Kulik, W.; Bezemer, R.; Nevière, R.; van Gulik, T. M.; Heger, M. Cholestasis is associated with hepatic microvascular dysfunction and aberrant energy metabolism before and during ischemia-reperfusion. Antioxid. Redox Signal. 2012, 17, 1109–1123.

    Article  Google Scholar 

  40. Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116.

    Article  Google Scholar 

  41. Ramakers, C.; Ruijter, J. M.; Deprez, R. H. L.; Moorman, A. F. M. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 2003, 339, 62–66.

    Article  Google Scholar 

  42. Trott, O.; Olson, A. J. Autodock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.

    Google Scholar 

  43. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. Dreiding: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909.

    Article  Google Scholar 

  44. Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228.

    Article  Google Scholar 

  45. Barbosa, L. R. S.; Ortore, M. G.; Spinozzi, F.; Mariani, P.; Bernstorff, S.; Itri, R. The importance of protein–protein interactions on the pH-induced conformational changes of bovine serum albumin: A small-angle X-ray scattering study. Biophys. J. 2010, 98, 147–157.

    Article  Google Scholar 

  46. Loboda, A.; Jazwa, A.; Wegiel, B.; Jozkowicz, A.; Dulak, J. Heme oxygenase-1-dependent and -independent regulation of angiogenic genes expression: Effect of cobalt protoporphyrin and cobalt chloride on VEGF and IL-8 synthesis in human microvascular endothelial cells. Cell. Mol. Biol. (Noisy-legrand) 2005, 51, 347–355.

    Google Scholar 

  47. Nowis, D.; Legat, M.; Grzela, T.; Niderla, J.; Wilczek, E.; Wilczynski, G. M.; Glodkowska, E.; Mrówka, P.; Issat, T.; Dulak, J. et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 2006, 25, 3365–3374.

    Article  Google Scholar 

  48. Berra, E.; Roux, D.; Richard, D. E.; Pouysségur, J. Hypoxiainducible factor-1a (HIF-1a) escapes O2-driven proteasomal degradation irrespective of its subcellular localization: Nucleus or cytoplasm. EMBO Rep. 2001, 2, 615–620.

    Article  Google Scholar 

  49. Newby, D.; Marks, L.; Lyall, F. Dissolved oxygen concentration in culture medium: Assumptions and pitfalls. Placenta 2005, 26, 353–357.

    Article  Google Scholar 

  50. Fears, C. Y.; Gladson, C. L.; Woods, A. Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J. Biol. Chem. 2006, 281, 14533–14536.

    Article  Google Scholar 

  51. Ran, S.; Downes, A.; Thorpe, P. E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 2002, 62, 6132–6140.

    Google Scholar 

  52. Kaidi, A.; Qualtrough, D.; Williams, A. C.; Paraskeva, C. Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res. 2006, 66, 6683–6691.

    Article  Google Scholar 

  53. Hu, J.; Discher, D. J.; Bishopric, N. H.; Webster, K. A. Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochem. Biophys. Res. Commun. 1998, 245, 894–899.

    Article  Google Scholar 

  54. Fink, T.; Kazlauskas, A.; Poellinger, L.; Ebbesen, P.; Zachar, V. Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood 2002, 99, 2077–2083.

    Article  Google Scholar 

  55. Zhou, Q. Y.; Olivo, M.; Lye, K. Y. K.; Moore, S.; Sharma, A.; Chowbay, B. Enhancing the therapeutic responsiveness of photodynamic therapy with the antiangiogenic agents SU5416 and SU6668 in murine nasopharyngeal carcinoma models. Cancer Chemother. Pharmacol. 2005, 56, 569–577.

    Article  Google Scholar 

  56. Key, J.; Scheuermann, T. H.; Anderson, P. C.; Daggett, V.; Gardner, K. H. Principles of ligand binding within a completely buried cavity in HIF2a PAS-B. J. Am. Chem. Soc. 2009, 131, 17647–17654.

    Article  Google Scholar 

  57. Tennant, D. A.; Frezza, C.; MacKenzie, E. D.; Nguyen, Q. D.; Zheng, L.; Selak, M. A.; Roberts, D. L.; Dive, C.; Watson, D. G.; Aboagye, E. O. et al. Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene 2009, 28, 4009–4021.

    Article  Google Scholar 

  58. Solban, N.; Selbo, K.; Sinha, A. K.; Chang, S. K.; Hasan, T. Mechanistic investigation and implications of photodynamic therapy induction of vascular endothelial growth factor in prostate cancer. Cancer Res. 2006, 66, 5633–5640.

    Article  Google Scholar 

  59. Makowski, M.; Grzela, T.; Niderla, J.; LAzarczyk, M.; Mróz, P.; Kopeé, M.; Legat, M.; Strusinska, K.; Koziak, K.; Nowis, D. et al. Inhibition of cyclooxygenase-2 indirectly potentiates antitumor effects of photodynamic therapy in mice. Clin. Cancer Res. 2003, 9, 5417–5422.

    Google Scholar 

  60. Hendrickx, N.; Volanti, C.; Moens, U.; Seternes, O. M.; de Witte, P.; Vandenheede, J. R.; Piette, J.; Agostinis, P. Upregulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J. Biol. Chem. 2003, 278, 52231–52239.

    Article  Google Scholar 

  61. Kocanova, S.; Buytaert, E.; Matroule, J.-Y.; Piette, J.; Golab, J.; de Witte, P.; Agostinis, P. Induction of hemeoxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis 2007, 12, 731–741.

    Article  Google Scholar 

  62. Lladser, A.; Sanhueza, C.; Kiessling, R.; Quest, A. F. G. Is survivin the potential Achilles' heel of cancer? Adv. Cancer Res. 2011, 111, 1–37.

    Article  Google Scholar 

  63. Rosanò, L.; Spinella, F.; Bagnato, A. Endothelin 1 in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer 2013, 13, 637–651.

    Article  Google Scholar 

  64. Padilla, J.; Jenkins, N. T. Induction of endoplasmic reticulum stress impairs insulin-stimulated vasomotor relaxation in rat aortic rings: Role of endothelin-1. J. Physiol. Pharmacol. 2013, 64, 557–564.

    Google Scholar 

  65. Dolmans, D. E. J. G. J.; Kadambi, A.; Hill, J. S.; Waters, C. A.; Robinson, B. C.; Walker, J. P.; Fukumura, D.; Jain, R. K. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res. 2002, 62, 2151–2156.

    Google Scholar 

  66. Nowis, D.; Bugajski, M.; Winiarska, M.; Bil, J.; Szokalska, A.; Salwa, P.; Issat, T.; Was, H.; Jozkowicz, A.; Dulak, J. et al. Zinc protoporphyrin IX, a heme oxygenase-1 inhibitor, demonstrates potent antitumor effects but is unable to potentiate antitumor effects of chemotherapeutics in mice. BMC Cancer 2008, 8, 197.

    Article  Google Scholar 

  67. Harvey, E. H.; Webber, J.; Kessel, D.; Fromm, D. Killing tumor cells: The effect of photodynamic therapy using mono-l-aspartyl chlorine and NS-398. Am. J. Surg. 2005, 189, 302–305.

    Article  Google Scholar 

  68. Ferrario, A.; Lim, S.; Xu, F.; Luna, M.; Gaffney, K. J.; Petasis, N. A.; Schönthal, A. H.; Gomer, C. J. Enhancement of photodynamic therapy by 2,5-dimethyl celecoxib, a noncyclooxygenase- 2 inhibitor analog of celecoxib. Cancer Lett. 2011, 304, 33–40.

    Article  Google Scholar 

  69. Grimm, S.; Mvondo, D.; Grune, T.; Breusing, N. The outcome of 5-ALA-mediated photodynamic treatment in melanoma cells is influenced by vitamin C and heme oxygenase-1. Biofactors 2011, 37, 17–24.

    Article  Google Scholar 

  70. Frank, J.; Lornejad-Schäfer, M. R.; Schöffl, H.; Flaccus, A.; Lambert, C.; Biesalski, H. K. Inhibition of heme oxygenase-1 increases responsiveness of melanoma cells to ALA-based photodynamic therapy. Int. J. Oncol. 2007, 31, 1539–1545.

    Google Scholar 

  71. Miyake, M.; Ishii, M.; Kawashima, K.; Kodama, T.; Sugano, K.; Fujimoto, K.; Hirao, Y. siRNA-mediated knockdown of the heme synthesis and degradation pathways: Modulation of treatment effect of 5-aminolevulinic acid-based photodynamic therapy in urothelial cancer cell lines. Photochem. Photobiol. 2009, 85, 1020–1027.

    Article  Google Scholar 

  72. Akita, Y.; Kozaki, K.; Nakagawa, A.; Saito, T.; Ito, S.; Tamada, Y.; Fujiwara, S.; Nishikawa, N.; Uchida, K.; Yoshikawa, K. et al. Cyclooxygenase-2 is a possible target of treatment approach in conjunction with photodynamic therapy for various disorders in skin and oral cavity. Br. J. Dermatol. 2004, 151, 472–480.

    Article  Google Scholar 

  73. Ferrario, A.; Fisher, A. M.; Rucker, N.; Gomer, C. J. Celecoxib and NS-398 enhance photodynamic therapy by increasing in vitro apoptosis and decreasing in vivo inflammatory and angiogenic factors. Cancer Res. 2005, 65, 9473–9478.

    Article  Google Scholar 

  74. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 1997, 88, 323–331.

    Article  Google Scholar 

  75. Villunger, A.; Michalak, E. M.; Coutas, L.; Müllauer, F.; Böck, G.; Ausserlechner, M. J.; Adams, J. M.; Strasser, A. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 2003, 302, 1036–1038.

    Article  Google Scholar 

  76. Ravi, R.; Mookerjee, B.; Bhujwalla, Z. M.; Sutter, C. H.; Artemov, D.; Zeng, Q. W.; Dillehay, L. E.; Madan, A.; Semenza, G. L.; Bedi, A. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1a. Genes Dev. 2000, 14, 34–44.

    Google Scholar 

  77. Rogakou, E. P.; Pilch, D. R.; Orr, A. H.; Ivanova, V. S.; Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998, 273, 5858–5868.

    Article  Google Scholar 

  78. Reiss, M.; Brash, D. E.; Muñoz-Antonia, T.; Simon, J. A.; Ziegler, A.; Vellucci, V. F.; Zhou, Z. L. Status of the p53 tumor suppressor gene in human squamous carcinoma cell lines. Oncol. Res. 1992, 4, 349–357.

    Google Scholar 

  79. Kwok, T. T.; Mok, C. H.; Menton-Brennan, L. Up-regulation of a mutant form of p53 by doxorubicin in human squamous carcinoma cells. Cancer Res. 1994, 54, 2834–2836.

    Google Scholar 

  80. Daniels, J. S.; Gates, K. S.; Tronche, C.; Greenberg, M. M. Direct evidence for bimodal DNA damage induced by tirapazamine. Chem. Res. Toxicol. 1998, 11, 1254–1257.

    Article  Google Scholar 

  81. Gheonea, D. I.; Cârtâna, T.; Ciurea, T.; Popescu, C.; Badarau, A.; Saftoiu, A. Confocal laser endomicroscopy and immunoendoscopy for real-time assessment of vascularization in gastrointestinal malignancies. World J. Gastroenterol. 2011, 17, 21–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Heger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broekgaarden, M., Weijer, R., Krekorian, M. et al. Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes. Nano Res. 9, 1639–1662 (2016). https://doi.org/10.1007/s12274-016-1059-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1059-0

Keywords

Navigation