Skip to main content
Log in

Silver nanowires with semiconducting ligands for low-temperature transparent conductors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal nanowire networks represent a promising candidate for the rapid fabrication of transparent electrodes with high transmission and low sheet-resistance values at very low deposition temperatures. A commonly encountered challenge in the formation of conductive nanowire electrodes is establishing high-quality electronic contact between nanowires to facilitate long-range current transport through the network. A new system involving nanowire ligand removal and replacement with a semiconducting sol-gel tin oxide matrix has enabled the fabrication of high-performance transparent electrodes at dramatically reduced temperatures with minimal need for post-deposition treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.

    Article  Google Scholar 

  2. Kim, T.; Kim, Y. W.; Lee, H. S.; Kim, H.; Yang, W. S.; Suh, K. S. Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv. Funct. Mater. 2013, 2, 1250–1255.

    Article  Google Scholar 

  3. Hu, L. B.; Wu, H.; Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 2011, 2, 760–765.

    Article  Google Scholar 

  4. van de Groep, J.; Spinelli, P.; Polman, A. Transparent conducting silver nanowire networks. Nano Lett. 2012, 2, 3138–3144.

    Article  Google Scholar 

  5. Yang, L. Q.; Zhang, T.; Zhou, H. X.; Price, S. C.; Wiley, B. J.; You, W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 2011, 2, 4075–4084.

    Article  Google Scholar 

  6. Scardaci, V.; Coull, R.; Lyons, P. E.; Rickard, D.; Coleman, J. N. Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small 2011, 2, 2621–2628.

    Article  Google Scholar 

  7. Wiley, B.; Sun, Y. G.; Xia, Y. N. Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 2007, 2, 1067–1076.

    Article  Google Scholar 

  8. Korte, K. E.; Skrabalak, S. E.; Xia, Y. N. Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J. Mater. Chem. 2008, 2, 437–441.

    Article  Google Scholar 

  9. Madaria, A. R.; Kumar, A.; Zhou, C.W. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 2011, 2, 245201.

    Google Scholar 

  10. Lee, J.-Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solutionprocessed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 2, 689–692.

    Article  Google Scholar 

  11. Zhu, R.; Chung, C.-H.; Cha, K. C.; Yang, W. B.; Zheng, Y. B.; Zhou, H. P.; Song, T.-B.; Chen, C.-C.; Weiss, P. S.; Li, G. et al. Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 2011, 2, 9877–9882.

    Article  Google Scholar 

  12. Chung, C.-H.; Song, T.-B.; Bob, B.; Zhu, R.; Duan, H.-S.; Yang, Y. Silver nanowire composite window layers for fully solution-deposited thin-film photovoltaic devices. Adv. Mater. 2012, 2, 5499–5504.

    Article  Google Scholar 

  13. Kim, A.; Won, Y.; Woo, K.; Kim, C.-H.; Moon, J. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 2013, 2, 1081–1091.

    Article  Google Scholar 

  14. Ajuria, J.; Ugarte, I.; Cambarau, W.; Etxebarria, I.; Tena-Zaera, R.; Pacios, R. Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes. Sol. Energy Mater. Sol. Cells 2012, 2, 148–152.

    Article  Google Scholar 

  15. Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J. T.; Nge, T. T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 2, 1215–1222.

    Article  Google Scholar 

  16. Lim, J.-W.; Cho, D.-Y.; Kim, J.; Na, S.-I.; Kim, H.-K. Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 2, 348–354.

    Article  Google Scholar 

  17. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high dc to optical conductivity ratios. ACS Nano 2009, 2, 1767–1774.

    Article  Google Scholar 

  18. Hu, L. B.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 2, 2955–2963.

    Article  Google Scholar 

  19. Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Greyson, C. M.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 2, 241–249.

    Article  Google Scholar 

  20. Yu, Z. B.; Zhang, Q. W.; Li, L.; Chen, Q.; Niu, X. F.; Liu, J.; Pei, Q. B. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 2, 664–668.

    Google Scholar 

  21. Song, T.-B.; Chen, Y.; Chung, C.-H.; Yang, Y.; Bob, B.; Duan, H.-S.; Li, G.; Tu, K.-N.; Huang, Y.; Yang, Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014, 2, 2804–2811.

    Article  Google Scholar 

  22. Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 2012, 2, 3326–3332.

    Article  Google Scholar 

  23. Lee, J. H.; Lee, P.; Lee, D.; Lee, S. S.; Ko, S. H. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst. Growth Des. 2012, 2, 5598–5605.

    Article  Google Scholar 

  24. Bob, B.; Song, T.-B.; Chen, C.-C.; Xu, Z.; Yang, Y. Nanoscale dispersions of gelled SnO2: Material properties and device applications. Chem. Mater. 2013, 2, 4725–4730.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bob, B., Machness, A., Song, TB. et al. Silver nanowires with semiconducting ligands for low-temperature transparent conductors. Nano Res. 9, 392–400 (2016). https://doi.org/10.1007/s12274-015-0920-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0920-x

Keywords

Navigation