Skip to main content
Log in

Significant enhancement of UV emission in ZnO nanorods subject to Ga+ ion beam irradiation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Applications of ZnO nanomaterials in optoelectronics are still limited due to their insufficient photoluminescence efficiency. In order to optimize the photoluminescence properties of ZnO nanorods, the UV emission of vertically aligned ZnO nanorods grown on a Si substrate, in correlation with Ga+ ion irradiation at different ion energies (0.5 keV–16 keV), was investigated in the present study. We found that the UV intensity increased rapidly with increasing Ga+ ion energy, up to its maximum around 2 keV, at which point the intensity was approximately 50 times higher than that produced by as-grown ZnO nanorods. The gentle bombardment of low-energy Ga+ ions removes defects from ZnO nanorod surfaces. The Ga+ ions, on the other hand, implant into the nanorods, resulting in compressive strain. It is believed that the perfect arrangement of the crystal lattice upon removal of surface defects and the introduction of compressive strain are two factors that contribute to the significant enhancement of UV light generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang, Z. K.; Wong, G. K. L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 1998, 72, 3270–3272.

    Article  Google Scholar 

  2. Zhang, B. P.; Binh, N. T.; Wakatsuki, K.; Segawa, Y.; Yamada, Y.; Usami, N.; Kawasaki, M.; Koinuma, H. Formation of highly-aligned ZnO tubes on sapphire (0001) substrates. Appl. Phys. Lett. 2004, 84, 4098–4100.

    Article  Google Scholar 

  3. Zeng, H. B.; Duan, G. T.; Li, Y.; Yang, S. K.; Xu, X. X.; Cai, W. P. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Adv. Funct. Mater. 2010, 20, 561–572.

    Article  Google Scholar 

  4. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

    Article  Google Scholar 

  5. Kim, T. W.; Kawazoe, T.; Yamazaki, S.; Ohtsu, M.; Sekiguchi, T. Low-temperature orientation-selective growth and ultraviolet emission of single-crystal ZnO nanowires. Appl. Phys. Lett. 2004, 84, 3358–3360.

    Article  Google Scholar 

  6. Yadian, B.; Liu, H.; Wei, Y. F.; Wu, J. S.; Zhang, S.; Sun, L. F.; Zhao, C. W.; Liu, Q.; Ramanujan, R. V.; Zhou, K. et al. Towards perfectly ordered novel ZnO/Si nano-heterojunction arrays. Small 2014, 10, 344–348.

    Article  Google Scholar 

  7. Yang, Y.; Tay, B. K.; Sun, X. W.; Sze, J. Y.; Han, Z. J.; Wang, J. X.; Zhang, X. H.; Li, Y. B.; Zhang, S. Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation. Appl. Phys. Lett. 2007, 91, 071921.

    Article  Google Scholar 

  8. Yang, Y.; Sun, X. W.; Tay, B. K.; Cao, P. H. T.; Wang, J. X.; Zhang, X. H. Revealing the surface origin of green band emission from ZnOnanostructures by plasma immersion ion implantation induced quenching. Appl. Phys. 2008, 103, 064307.

    Article  Google Scholar 

  9. Lin, C. C.; Chen, H. P.; Liao, H. C.; Chen, S. Y. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 2005, 86, 183103.

    Article  Google Scholar 

  10. Chen, R.; Ye, Q. L.; He, T. C.; Wu, T.; Sun, H. D. Uniaxial tensile strain and exciton-phonon coupling in bent ZnO nanowires. Appl. Phys. Lett. 2011, 98, 241916.

    Article  Google Scholar 

  11. Chen, R.; Ye, Q. L.; He, T. C.; Ta, V. D.; Ying, Y. J.; Tay, Y. Y.; Wu, T.; Sun, H. D. Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core-shell nanowires. Nano Lett. 2013, 13, 734–739.

    Article  Google Scholar 

  12. Hwang, S. W.; Shin, D. H.; Kim, C. O.; Hong, S. H.; Kim, M. C.; Kim, J.; Lim, K. Y.; Kim, S.; Choi, S. H.; Ahn, K. J. et al. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films. Phys. Rev. Lett. 2010, 105, 127403.

    Article  Google Scholar 

  13. Shao, D. L.; Sun, H. T.; Yu, M. P.; Lian, J.; Sawyer, S. Enhanced ultraviolet emission from poly(vinyl alcohol) ZnO nanoparticles using a SiO2-Au core/shell structure. Nano Lett. 2012, 12, 5840–5844.

    Article  Google Scholar 

  14. Richters, J. P.; Voss, T.; Wischmeier, L.; Ruckmann, I.; Gutowski, J. Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires. Appl. Phys. Lett. 2008, 92, 011103.

    Article  Google Scholar 

  15. Liu, K. W.; Chen, R.; Xing, G. Z.; Wu, T.; Sun, H. D. Photoluminescence characteristics of high quality ZnO nanowiresand its enhancement by polymer covering. Appl. Phys. Lett. 2010, 96, 023111.

    Article  Google Scholar 

  16. Liu, M. N.; Chen, R.; Adamo, G.; MacDonald, K. F.; Sie, E. J.; Sum, T. C.; Zheludev, N. I.; Sun, H. D.; Fan, H. J. Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer. Nanophotonics 2013, 2, 153–160.

    Article  Google Scholar 

  17. Lin, K. F.; Cheng, H. M.; Hsu, H. C.; Lin, L. J.; Hsieh, W. F. Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chem. Phys. Lett. 2005, 409, 208–211.

    Article  Google Scholar 

  18. Yang, Y. L.; Yan, H. W.; Fu, Z. P.; Yang, B. F.; Xia, L. S.; Xu, Y. D.; Zuo, J.; Lu, F. Q. Photoluminescence investigation based on laser heating effect in ZnO-ordered nanostructures. J. Phys. Chem. B 2005, 110, 846–852.

    Article  Google Scholar 

  19. Yan, B.; Chen, R.; Zhou, W. W.; Zhang, J. X.; Sun, H. D.; Gong, H.; Yu, T. Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires. Nanotechnology 2010, 21, 445706.

    Article  Google Scholar 

  20. Voss, T.; Bekeny, C.; Wischmeier, L.; Gafsi, H.; Borner, S.; Schade, W.; Mofor, A. C.; Bakin, A.; Waag, A. Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires. Appl. Phys. Lett. 2006, 89, 182107.

    Article  Google Scholar 

  21. Yang, Y.; Sun, X. W.; Tay, B. K.; Cao, P. H. T.; Wang, J. X.; Zhang, X. H. Revealing the surface origin of green band emission from ZnO nanostructures by plasma immersion ion implantation induced quenching. J. Appl. Phys. 2008, 103, 064307

    Article  Google Scholar 

  22. Rosenberg, R. A.; Abu Haija, M.; Vijayalakshmi, K.; Zhou, J.; Xu, S.; Wang, Z. L. Depth resolved luminescence from oriented ZnO nanowires. Appl. Phys. Lett. 2009, 95, 243101.

    Article  Google Scholar 

  23. Shalish, I.; Temkin, H.; Narayanamurti, V. Size-dependent surface luminescence in ZnO nanowires. Phys. Rev. B 2004, 69, 245401.

    Article  Google Scholar 

  24. Yang, Q.; Wang, W. H.; Xu, S.; Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezophototronic Effect. Nano Lett. 2011, 11, 4012–4017.

    Article  Google Scholar 

  25. Shi, L. B.; Cheng, S.; Li, R. B.; Kang, L.; Jin, J. W.; Li, M. B.; Xu, C. Y. A study on strain affecting electronic structure of Wurtzite ZnO by first principles. Mod. Phys. Lett. B 2009, 23, 2339–2352.

    Article  Google Scholar 

  26. Bhosle, V.; Tiwari, A.; Narayan, J. Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Appl. Phys. Lett. 2006, 88, 032106.

    Article  Google Scholar 

  27. Ilican, S.; Caglar, Y.; Caglar, M.; Yakuphanoglu, F. Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by sol-gel process. Appl. Surf. Sci. 2008, 255, 2353–2359.

    Article  Google Scholar 

  28. Hou, Q. Y.; Zhao, C. W.; Jin, Y. J.; Guan, Y. Q.; Lin, L.; Li, J. J. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist principles. Acta Phys. Sin. 2010, 59, 4156–4161.

    Google Scholar 

  29. Zhou, K. Fabrication of Ga-doped transparent ZnO film and investigation of its photoelectronic properties. MD. Dissertation, College of Physics of Chongqing University, Chongqing, China, 2010, 39–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhu or Yizhong Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadian, B., Chen, R., Liu, H. et al. Significant enhancement of UV emission in ZnO nanorods subject to Ga+ ion beam irradiation. Nano Res. 8, 1857–1864 (2015). https://doi.org/10.1007/s12274-014-0693-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0693-7

Keywords

Navigation