Skip to main content
Log in

Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The power conversion efficiency of organometallic perovskite-based solar cells has skyrocketed in recent years. Intensive efforts have been made to prepare high-quality perovskite films tailored to various device configurations. Planar heterojunction devices have achieved record efficiencies; however, the preparation of perovskite films for planar junction devices requires the use of expensive vacuum facilities and/or the fine control of experimental conditions. Here, we demonstrate a facile preparation of perovskite films using solid-state chemistry. Solid-state precursor thin films of CH3NH3I and PbI2 are brought into contact with each other and allowed to react via thermally accelerated diffusion. The resulting perovskite film displays good optical absorption and a smooth morphology. Solar cells based on these films show an average efficiency of 8.7% and a maximum efficiency of 10%. The solid-state synthesis of organometallic perovskite can also be carried out on flexible plastic substrates. Using this method on a PET/ITO substrate produces devices with an efficiency of 3.2%. Unlike existing synthetic methods for organometallic perovskite films, the solid-state reaction method does not require the use of orthogonal solvents or careful adjustment of reaction conditions, and thus shows good potential for mass production in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.

    Article  Google Scholar 

  2. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

    Article  Google Scholar 

  3. Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.

    Article  Google Scholar 

  4. Noh, J. H.; Jeon, N. J.; Choi, Y. C.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/co-complex as hole-transporting material. J. Mater. Chem. A 2013, 1, 11842–11847.

    Article  Google Scholar 

  5. Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T.; et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 12, 1749–1758.

    Article  Google Scholar 

  6. Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

    Article  Google Scholar 

  7. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

    Article  Google Scholar 

  8. Xing, G. H.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Graetzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

    Article  Google Scholar 

  9. Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519.

    Article  Google Scholar 

  10. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761.

    Article  Google Scholar 

  11. Kim, H.-S.; Im, S. H.; Park, N.-G. Organolead halide perovskite: New horizons in solar cell research. J. Phys. Chem. C 2014, 118, 5615–5625.

    Article  Google Scholar 

  12. Liang, P.-W.; Liao, C.-Y.; Chueh, C.-C.; Zuo, F.; Williams, S. T.; Xin, X.-K.; Lin, J.; Jen, A. K. Y. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754.

    Article  Google Scholar 

  13. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151–157.

    Article  Google Scholar 

  14. Dualeh, A.; Tetreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic-inorganic hybrid perovskite solid-state solar cells. Adv. Funct. Mater. 2014, 24, 3250–3258.

    Article  Google Scholar 

  15. Chen, Q.; Zhou, H. P.; Hong, Z. R.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y. S.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014, 136, 622–625.

    Article  Google Scholar 

  16. Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

    Article  Google Scholar 

  17. Liu, D. Y.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133–138.

    Article  Google Scholar 

  18. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  Google Scholar 

  19. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

    Article  Google Scholar 

  20. Yu, Y.-Y.; Chiang, R.-S.; Hsu, H.-L.; Yang, C.-C.; Chen, C.-P. Perovskite photovoltaics featuring solution-processable TiO2 as an interfacial electron-transporting layer display to improve performance and stability. Nanoscale 2014, 6, 11403–11410.

    Article  Google Scholar 

  21. Nikitine, S.; Ringeissen, J.; Schmittb, J.; Biellmann, J. Etude spectrophotomètriquedes raies du spectre excitonique ordinaire de PbI2 A 4,2°K. J. Phys. Chem. Solids 1964, 25, 951–960.

    Article  Google Scholar 

  22. Gähwiller, C.; Harbeke, G. Excitonic effects in theelectroreflectance of lead iodide. Phys. Rev. 1969, 185, 1141–1149.

    Article  Google Scholar 

  23. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

    Google Scholar 

  24. Ha, S. T.; Liu, X. F.; Zhang, Q.; Giovanni, D.; Sum, T. C.; Xiong, Q. H. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2014, 2, 838–844.

    Article  Google Scholar 

  25. Dennler, G.; Scharber, M. C.; Brabec, C. J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338.

    Article  Google Scholar 

  26. Zhang, Q.; Wan, X. J.; Xing, F.; Huang, L.; Long, G. K.; Yi, N. B.; Ni, W.; Liu, Z. B.; Tian, J. G.; Chen, Y. S. Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Res. 2013, 6, 478–484.

    Article  Google Scholar 

  27. Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, highyield perovskite photovoltaic devices grown by inter-diffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

    Article  Google Scholar 

  28. Sun, S. Y.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G. C.; Sum, T. C.; Lam, Y. M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399–407.

    Article  Google Scholar 

  29. Kim, H.-B.; Choi, H.; Jeong, J.; Kim, S.; Walker, B.; Song, S.; Kim, J. Y. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 2014, 6, 6679–6683.

    Article  Google Scholar 

  30. Hsu, H.-L.; Chen, C.-P.; Chang, J.-Y.; Yu, Y.-Y.; Shen, Y.-K. Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale 2014, 6, 10281–10288.

    Article  Google Scholar 

  31. Caballero, R.; Guillen, C. Comparative studies between Cu-Ga-Se and Cu-In-Se thin film systems. Thin Solid Films 2002, 403, 107–111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhua Cai or Liwei Chen.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Tang, F., Wang, Y. et al. Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry. Nano Res. 8, 263–270 (2015). https://doi.org/10.1007/s12274-014-0662-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0662-1

Keywords

Navigation