Skip to main content
Log in

Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Crystalline and nanostructured cobalt (CoFe2O4), nickel (NiFe2O4), zinc (ZnFe2O4) and manganese (MnFe2O4) spinel ferrites are synthesized with high yields, crystallinity and purity through an easy, quick, reproducible and low-temperature hydrothermal assisted route starting from an aqueous suspension of coprecipitated metal oxalates. The use of water as a reaction medium is a further advantage of the chosen protocol. Additionally, the zinc spinel is also prepared through an alternative route combining coprecipitation of oxalates from an aqueous solution with thermal decomposition under reflux conditions. The nanocrystalline powders are obtained as a pure crystalline phase already at the extremely low temperature of 75 °C and no further thermal treatment is needed. The structure and microstructure of the prepared materials is investigated by means of X-ray powder diffraction (XRPD), while X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analyses are used to gain information about the surface and bulk composition of the samples, respectively, confirming the expected stoichiometry. To investigate the effect of the synthesis protocol on the morphology of the obtained ferrites, transmission electron microscopy (TEM) observations are performed on selected samples. The magnetic properties of the cobalt and manganese spinels are also investigated using a superconducting quantum device magnetometer (SQUID) revealing hard and soft ferrimagnetic behavior, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Toward greener nanosynthesis. Chem. Rev. 2007, 107, 2228–2269.

    Google Scholar 

  2. Song, C. Fuel processing for low-temperature and high-temperature fuel cells. Challenges, and opportunities for sustainable development in the twenty-first century. Catal. Today 2002 77, 17–49.

    Google Scholar 

  3. Trost, B. M. On inventing reactions for atom economy. Acc. Chem. Res. 2002, 35, 695–705.

    Google Scholar 

  4. Herrmann, J. M.; Duchamp, C.; Karkmaz, M.; Hoai, B. T.; Lachheb, H.; Puzenat, E.; Guillard, C. Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. 2007, 146, 624–629.

    Google Scholar 

  5. Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd Ed.; Pergamon Press: India, 1998.

    Google Scholar 

  6. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th Ed.; John Wiley & Sons: New York, 1988.

    Google Scholar 

  7. Holleman, A. F.; Wieberg, E. Lehrbuch der Anorganischen Chemie, 101st Ed.; Walter de Gruyter: New York, 1995.

    Google Scholar 

  8. Kung, H. H. Transition Metal Oxides: Surface Chemistry and Catalysis. Elsevier: Amsterdam, 1989.

    Google Scholar 

  9. Rao, C. N. R.; Raveau, B. Transition Metal Oxides: Structure, Properties and Synthesis of Ceramic Oxides. Wiley VCH: Weinheim, 2009.

    Google Scholar 

  10. de Muro, I. G.; Insausti, M.; Lezama, L.; Rojo, T. Effects of the synthesis conditions on the magnetic and electrical properties of the BaFeO3−x oxide: Ametamagnetic behaviour. J. Solid State Chem. 2005, 178, 1712–1719.

    Google Scholar 

  11. Deng, Y.; Zhou, J. X.; Wu, D.; Du, Y. L.; Zhang, M. S.; Wang, D. H.; Yu, H. Q.; Tang, S. L.; Du, Y. W. Three-dimensional phases-connectivity and strong magnetoelectric response of self-assembled feather-like CoFe2O4-BaTiO3 nanostructures. Chem. Phys. Lett. 2010, 496, 301–305.

    Google Scholar 

  12. Rezlescu, N.; Doroftei, C.; Popa, P. D. Humidity-sensitive electrical resistivity of MgFe2O4 and Mg0.9Sn0.1Fe2O4 porous ceramics. Rom. J. Phys. 2007, 52, 353–360.

    Google Scholar 

  13. Florea, M.; Alifanti, M.; Parvulescu, V. I.; Mihaila-Tarabasanu, D.; Diamandescu, L.; Feder, M.; Negrila, C.; Frunza, L. Total oxidation of toluene on ferrite-type catalysts. Catal. Today 2009, 141, 361–366.

    Google Scholar 

  14. Scheffe, J. R.; Li, J.; Weimer, A. W. A spinel ferrite/hercynite water-splitting redox cycle. Int. J. Hydrogen Energ. 2010, 35, 3333–3340.

    Google Scholar 

  15. Menini, L.; Pereira, M. C.; Parreira, L. A.; Fabris, J. D.; Gusevskaya, E. V. Cobalt- and manganese-substituted ferrites as efficient single-site heterogeneous catalysts for aerobic oxidation of monoterpenic alkenes under solvent-free conditions. J. Catal. 2008, 254, 355–364.

    Google Scholar 

  16. Latham, A. H.; Williams, M. E. Controlling transport and chemical functionality of magnetic nanoparticles. Acc. Chem. Res. 2008, 41, 411–420.

    Google Scholar 

  17. Colombo, M.; Carregal-Romero, S.; Casula, M. F.; Gutierrez, L.; Morales, M. P.; Boehm, I. B.; Heverhagen, J. T.; Prosperi, D.; Parak, W. J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 2012, 41, 4306–4334.

    Google Scholar 

  18. Gijs, M. A. M.; Lacharme, F.; Lehmann, U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem. Rev. 2010, 110, 1518–1563.

    Google Scholar 

  19. Nordhei, C.; Ramstad, A. L.; Nicholson, D. G. Nanophase cobalt, nickel and zinc ferrites: Synchrotron XAS study on the crystallite size dependence of metal distribution. Phys. Chem. Chem. Phys. 2008, 10, 1053–1066.

    Google Scholar 

  20. Costa, A. C. F. M.; Tortella, E.; Morelli, M. R.; Kiminami, R. H. G. A. Synthesis, microstructure and magnetic properties of Ni-Zn ferrites. J. Magn. Magn. Mater. 2003, 256, 174–182.

    Google Scholar 

  21. Thummer, K. P.; Chantbar, M. C.; Modi, K. B.; Baldha, G. J.; Joshi, H. H. Localized canted spin behaviour in ZnxMg1.5−x Mn0.5FeO4 spinel ferrite system. J. Magn. Magn. Mater. 2004, 280, 23–30.

    Google Scholar 

  22. Niederberger, M.; Pinna, N. Metal Oxide Nanoparticles in Organic Solvents-Synthesis, Formation, Assembly and Applications; Springer: New York, 2009.

    Google Scholar 

  23. Schubert, U.; Hüsing, N. Synthesis of Inorganic Materials, 2nd Ed.; Wiley-VCH: Weinheim, 2005.

    Google Scholar 

  24. Bao, N. Z.; Shen, L. M.; Wang, Y. H.; Padhan, P.; Gupta, A. A facile thermolysis route to ferrite nanocrystals. J. Am. Chem. Soc. 2007, 129, 12374–12375.

    Google Scholar 

  25. Modeshia, D. R.; Walton, R. I. Solvothermal synthesis of perovskites and pyrochlores: Crystallization of functional oxides under mild conditions. Chem. Soc. Rev. 2010, 39, 4303–4325.

    Google Scholar 

  26. Pinna, N.; Grancharov, S.; Beato, P.; Bonville, P.; Antonietti, M.; Niederberger, M. Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 2005, 17, 3044–3049.

    Google Scholar 

  27. Grasset, F.; Labhsetwar, N.; Li, D.; Park, D. C.; Saito, N.; Haneda, H.; Cador, O.; Roisnel, T.; Mornet, S.; Duguet, E. et al. Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: Powder, colloidal solution, and zinc ferrite-silica core-shell nanoparticles. Langmuir 2002, 18, 8209–8216.

    Google Scholar 

  28. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

    Google Scholar 

  29. Baldi, G.; Bonacchi, D.; Lorenzi, G.; Innocenti, C.; Sangregorio, C. Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties. J. Magn. Magn. Mater. 2007, 311, 10–16.

    Google Scholar 

  30. Niederberger, M. Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res. 2007, 40, 793–800.

    Google Scholar 

  31. Wu, J. H.; Ko, S. P.; Liu, H. L.; Kim, S.; Ju, J. S.; Kim, K. Y. Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties. Mater. Lett. 2007, 61, 3124–3129.

    Google Scholar 

  32. Rigby, E.; Kehr, W.; Meldrum, C. Preparation of coprecipitated NiZn ferrite. IEEE T. Magn. 1984, 20, 1506–1508.

    Google Scholar 

  33. Kanade, S. A.; Puri, V. Properties of thick film Ni0.6Co0.4 FeyMn2−y O4: (0⩾y⩾0.5) NTC ceramic. J. Alloys. Compd. 2009, 475, 352–355.

    Google Scholar 

  34. Gabal, M. A.; Al, A. Y. M. Effect of diamagnetic substitution on the structural, magnetic and electrical properties of NiFe2O4. Mater. Chem. Phys. 2009, 115, 578–584.

    Google Scholar 

  35. Toberer, E. S.; Joshi, A.; Seshadri, R. Template-free routes to macroporous monoliths of nickel and iron oxides: Toward porous metals and conformally coated pore walls. Chem. Mater. 2005, 17, 2142–2147.

    Google Scholar 

  36. Wang, M.; Ai, Z.; Zhang, L. Generalized preparation of porous nanocrystalline ZnFe2O4 superstructures from zinc ferrioxalate precursor and its superparamagnetic property. J. Phys. Chem. C 2008, 112, 13163–13170.

    Google Scholar 

  37. Diodati, S.; Nodari, L.; Natile, M. M.; Russo, U.; Tondello, E.; Lutterotti, L.; Gross, S. Highly crystalline strontium ferrites SrFeO3−δ : An easy and effective wet-chemistry synthesis. Dalton Trans. 2012, 41, 5517–5525.

    Google Scholar 

  38. Diodati, S.; Nodari, L.; Natile, M. M.; Caneschi, A.; de Julián Fernández, C.; Hoffmann, C.; Kaskel, S.; Lieb, A.; Di Noto, V.; Mascotto, S. et al. Coprecipitation of oxalates: An easy and reproducible wet-chemistry synthesis route for transition metal ferrites. Eur. J. Inorg. Chem. 2014, 875–887.

    Google Scholar 

  39. Byrappa, K.; Yoshimura, M. Handbook of Hydrothermal Technology; Noyes Publications: Park Ridge, New Jersey, U.S.A, 2001.

    Google Scholar 

  40. Lobachev, A. N. Crystallization Processes Under Hydrothermal Conditions, 1st Ed.; Consultants Bureau: New York, 1973.

    Google Scholar 

  41. Zhou, J.; Ma, J. F.; Sun, C.; Xie, L. J.; Zhao, Z. Q.; Tian, H.; Wang, Y. G.; Tao, J. T.; Zhu, X. Y. Low-temperature synthesis of NiFe2O4 by a hydrothermal method. J. Am. Ceram. Soc. 2005, 88, 3535–3537.

    Google Scholar 

  42. Truong, Q. D.; Le, T. H.; Liu, J.-Y.; Chung, C.-C.; Ling, Y.-C. Synthesis of TiO2 nanoparticles using novel titanium oxalate complex towards visible light-driven photocatalytic reduction of CO2 to CH3OH. Appl. Catal. A-Gen. 2012, 437–438, 28–35.

    Google Scholar 

  43. Zhang, G. J.; Shen, Z. R.; Liu, M.; Guo, C. H.; Sun, P. C.; Yuan, Z. Y.; Li, B. H.; Ding, D. T.; Chen, T. H. Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids. J. Phys. Chem. B 2006, 110, 25782–25790.

    Google Scholar 

  44. Truong, Q. D.; Kakihana, M. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex. J. Crystal Growth 2012, 348, 60–64.

    Google Scholar 

  45. Yang, J.; Mei, S.; Ferreira, J. M. F. Hydrothermal synthesis of nanosized titania powders: Influence of tetraalkyl ammonium hydroxides on particle characteristics. J. Am. Ceram. Soc. 2001, 84, 1696–1702.

    Google Scholar 

  46. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy-A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Perkin-Elmer Corp.: Eden Prarie, Minnesota, 1992.

    Google Scholar 

  47. NIST XPS Database-Version 3.5. http://srdata.nist.gov/xps/.

  48. Briggs, D.; Seah, M. P. Practical Surface Analysis: Volume 1-Auger and X-ray Photoelectron Spectroscopy, 2nd Ed.; John Wiley & Sons: New York, 1990.

    Google Scholar 

  49. Wang, Z. G.; Zu, X. T.; Zhu, S.; Wang, L. M. Green luminescence originates from surface defects in ZnO nanoparticles. Phys. E. 2006, 35, 199–202.

    Google Scholar 

  50. Shirley, D. A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 1972, 5, 4709–4713.

    Google Scholar 

  51. High Tech International Services Snc XPS_AES Program v. 4.7; www.htis.it, 2006.

  52. Kwok, R. H. W. XPSPEAK, 4.1; University of Hong Kong: Hong Kong, 1994.

    Google Scholar 

  53. Lutterotti, L. MAUD Program; Università degli Studi di Trento: Trento, 1998.

    Google Scholar 

  54. Aono, H.; Hirazawa, H.; Naohara, T.; Maehara, T. Surface study of fine MgFe2O4 ferrite powder prepared by chemical methods. Appl. Surf. Sci. 2008, 254, 2319–2324.

    Google Scholar 

  55. Bayoumi, W. Structural and electrical properties of zinc-substituted cobalt ferrite. J. Mater. Sci. 2007, 42, 8254–8261.

    Google Scholar 

  56. Kakihana, M.; Yoshimura, M. Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method. Bull. Chem. Soc. Jpn. 1999, 72, 1427–1443.

    Google Scholar 

  57. Lessing, P. A. Mixed-cation oxide powders via polymeric precursors. Am. Ceram. Soc. Bull. 1989, 68, 1002–1007.

    Google Scholar 

  58. Segal, D. Chemical synthesis of ceramic materials. J. Mater. Chem. 1997, 7, 1297–1305.

    Google Scholar 

  59. Jiang, Q.-H.; Nan, C.-W.; Shen, Z.-J. Synthesis and properties of multiferroic La-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 2006, 89, 2123–2127.

    Google Scholar 

  60. Haetge, J.; Suchomski, C.; Brezesinski, T. Ordered mesoporous MFe2O4 (M = Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, uniform 16 nm diameter pores and high thermal stability: Template-directed synthesis and characterization of redox active trevorite. Inorg. Chem. 2010, 49, 11619–11626.

    Google Scholar 

  61. Broadbent, D.; Dollimore, D.; Dollimore, J. The thermal decomposition of oxalates. Part V. The thermal decomposition of nickel oxalate dihydrate. J. Chem. Soc. A 1966, 278–281.

    Google Scholar 

  62. Broadbent, D.; Dollimore, D.; Dollimore, J. The thermal decomposition of oxalates. Part IX. The thermal decomposition of the oxalate complexes of iron. J. Chem. Soc. A 1967, 451–454.

    Google Scholar 

  63. Dollimore, D.; Griffiths, D. L.; Nicholson, D. The thermal decomposition of oxalates. Part II. Thermogravimetric analysis of various oxalates in air and in nitrogen. J. Chem. Soc. 1963, 2617–2623.

    Google Scholar 

  64. Dollimore, D.; Nicholson, D. The thermal decomposition of oxalates. Part VI. The decomposition and surface properties of ferric oxalate. J. Chem. Soc. A 1966, 281–284.

    Google Scholar 

  65. Dollimore, D.; Nicholson, D. The thermal decomposition of oxalates. Part I. The variation of surface area with the temperature of treatment in air. J. Chem. Soc. 1962, 960–965.

    Google Scholar 

  66. Gull, S. F.; Daniell, G. J. Image reconstruction from incomplete and noisy data. Nature 1978, 272, 686–690.

    Google Scholar 

  67. Wychoff, R. W. G. Structure of Crystals; The Chemical Catalogue Company Inc.: New York, 1931.

    Google Scholar 

  68. Passerini, L. Ricerche sugli spinelli. II. I composti: CuAl2O4; MgAl2O4; MgFe2O4; ZnAl2O4; ZnCr2O4; ZnFe2O4; MnFe2O4. Gazz. Chim. Ital. 1930, 60, 389–399.

    Google Scholar 

  69. Montoro, V. Miscibilità tra gli ossidi di ferro e di manganese. Gazz. Chim. Ital. 1938, 68, 728–733.

    Google Scholar 

  70. Kremnović, A.; Antić, B.; Vuĉinić-Vasić, M.; Colomban, P.; Jovalekić, C.; Bibić, N.; Kahlenberg, V.; Leoni, M. Temperature-induced structure and microstructure evolution of nanostructured Ni0.9Zn0.1O. J. Appl. Cryst. 2010, 43, 699–709.

    Google Scholar 

  71. Crystallography Open Database. http://www.crystallography. net/.

  72. Le Bail, A. In Proceedings of the International Conference on Accuracy in powder Diffraction ll. NIST, Gaithersburg, 1992, pp142–153.

    Google Scholar 

  73. Ceccone, G.; Marmorato, P.; Ponti, J.; Rossi, F.; Kaulich, B.; Gianocelli, A.; Pascolo, L.; Salome, M.; Kiskinova, M. Synchrotron radiation X-ray fluorescence mapping of cobalt ferrite nanoparticles in Balb/3T3 fibroblast cells. Pacifichem 2010-International Chemical Congress of Pacific Basin Societies, Honolulu, U.S.A., 2010.

    Google Scholar 

  74. Schrader, B. Infrared and Raman Spectroscopy: Methods and Applications, 1st Ed.; VCH: Weinheim, Germany, 1995.

    Google Scholar 

  75. Ayyappan, S.; Mahadevan, S.; Chandramohan, P.; Srinivasan, M. P.; Philip, J.; Raj, B. Influence of Co2+ ion concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles. J. Phys. Chem. C 2010, 114, 6334–6341.

    Google Scholar 

  76. Chandramohan, P.; Srinivasan, M. P.; Velmurugan, S.; Narasimhan, S. V. Cation distribution and particle size effect on Raman spectrum of CoFe2O4. J. Solid State Chem. 2011, 184, 89–96.

    Google Scholar 

  77. Varshney, D.; Verma, K.; Kumar, A. Structural and vibrational properties of ZnxMn1−x Fe2O4 (x = 0.0, 0.25, 0.50, 0.75, 1.0) mixed ferrites. Mater. Chem. Phys. 2011, 131, 413–419.

    Google Scholar 

  78. Ahlawat, A.; Sathe, V. G.; Reddy, V. R.; Gupta, A. Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol-gel auto-combustion method. J. Magn. Magn. Mater. 2011, 323, 2049–2054.

    Google Scholar 

  79. Lazarević, Z. Ž.; Jovalekić, Č.; Milutinović, A.; Romcević, M. J.; Romcević, N. Ž. Preparation and characterization of nano ferrites. Acta Phys. Pol. A 2012, 121, 682–686.

    Google Scholar 

  80. Wang, Z. W.; Schiferl, D.; Zhao, Y. S.; O’Neill, H. S. C. High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. J. Phys. Chem. Solids 2003, 64, 2517–2523.

    Google Scholar 

  81. Nongjai, R.; Khan, S.; Asokan, K.; Ahmed, H.; Khan, I. Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 2012, 112, 084321.

    Google Scholar 

  82. Yamashita, O.; Ikeda, T. Effect of polishing stress on Raman spectra of the Mn-Zn ferrite. J. Appl. Phys. 2004, 95, 1743–1748.

    Google Scholar 

  83. Lee, H.; Jung, J. C.; Kim, H.; Chung, Y.-M.; Kim, T. J.; Lee, S. J.; Oh, S.-H.; Kim, Y. S.; Song, I. K. Effect of divalent metal component (MeII) on the catalytic performance of MeIIFe2O4 catalysts in the oxidative dehydrogenation of n-butene to 1,3-butadiene. Catal. Lett. 2008, 124, 364–368.

    Google Scholar 

  84. Zhang, S. X.; Niu, H. Y.; Cai, Y. Q.; Zhao, X. L.; Shi, Y. L. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 2010, 158, 599–607.

    Google Scholar 

  85. Domenichini, B.; Pataut, G.; Bourgeois, S. Stabilization of polar solid oxide surfaces: Competition between adsorption and reconstruction. Surf. Interface Anal. 2002, 34, 540–544.

    Google Scholar 

  86. Bera, S.; Prince, A. A. M.; Velmurugan, S.; Raghavan, P. S.; Gopalan, R.; Panneerselvam, G.; Narasimhan, S. V. Formation of zinc ferrite by solid-state reaction and its characterization by XRD and XPS. J. Mater. Sci. 2001, 36, 5379–5384.

    Google Scholar 

  87. Herranz, T.; Rojas, S.; Ojeda, M.; Pérez-Alonso, F. J.; Terreros, P.; Pirota, K.; Fierro, J. L. G. Synthesis, structural features, and reactivity of Fe-Mn mixed oxides prepared by microemulsion. Chem. Mater. 2006, 18, 2364–2375.

    Google Scholar 

  88. Mittal, V. K.; Bera, S.; Nithya, R.; Srinivasan, M. P.; Velmurugan, S.; Narasimhan, S. V. Solid state synthesis of Mg-Ni ferrite and characterization by XRD and XPS. J. Nucl. Mater. 2004, 335, 302–310.

    Google Scholar 

  89. Mittal, V. K.; Chandramohan, P.; Bera, S.; Srinivasan, M. P.; Velmurugan, S.; Narasimhan, S. V. Cation distribution in NixMg1−x Fe2O4 studied by XPS and Mössbauer spectroscopy. Solid State Commun. 2006, 137, 6–10.

    Google Scholar 

  90. Baruwati, B.; Rana, R. K.; Manorama, S. V. Further insights in the conductivity behavior of nanocrystalline NiFe2O4. J. Appl. Phys. 2007, 101, 014302.

    Google Scholar 

  91. Nawale, A. B.; Kanhe, N. S.; Patil, K. R.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K. Magnetic properties of thermal plasma synthesized nanocrystalline nickel ferrite (NiFe2O4). J. Alloys. Compd. 2011, 509, 4404–4413.

    Google Scholar 

  92. Glisenti, A.; Natile, M. M.; Galenda, A. PrMnO3 prepared by the citrate gel method, studied by XPS. Surf Sci. Spec. 2009, 16, 67–74.

    Google Scholar 

  93. Murray, J. W.; Dillard, J. G.; Giovanoli, R.; Moers, H.; Stumm, W. Oxidation of manganese (II): Initial mineralogy, oxidation state and ageing. Geochim. Cosmochim. Ac. 1985, 49, 463–470.

    Google Scholar 

  94. Gupta, R. P.; Sen, S. K. Calculation of multiplet structure of core p-vacancy levels. Phys. Rev. B 1974, 10, 71–77.

    Google Scholar 

  95. Kim, K. J.; Lee, H. J.; Park, J. Y. Cationic behavior and the related magnetic and magnetotransport properties of manganese ferrite thin films. J. Magn. Magn. Mater. 2009, 321, 3706–3711.

    Google Scholar 

  96. Hu, J.; Lo, I. M. C.; Chen, G. H. Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir 2005, 21, 11173–11179.

    Google Scholar 

  97. Natile, M. M.; Glisenti, A. Surface reactivity of NiO: Interaction with methanol. Chem. Mater. 2002, 14, 4895–4903.

    Google Scholar 

  98. Bardhan, A.; Ghosh, C. K.; Mitra, M. K.; Das, G. C.; Mukherjee, S.; Chattopadhyay, K. K. Low temperature synthesis of zinc ferrite nanoparticles. Solid State Sci. 2010, 12, 839–844.

    Google Scholar 

  99. Tahir, A. A.; Wijayantha, K. G. U. Photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes. J. Photoch. Photobio. A 2010, 216, 119–125.

    Google Scholar 

  100. Dionne, G. F. Magnetic Oxides, 1st Ed.; Springer: London, 2009.

    Google Scholar 

  101. Tilley, R.J. D. Understanding Solids-The Science of Materials; J. Wiley & Sons: Chichester, West Sussex, England, 2004.

    Google Scholar 

  102. Coey, J. M. D. Magnetism and Magnetic Materials, 1st Ed.; Cambridge University Press: New York, 2010.

    Google Scholar 

  103. Özgür, Ü.; Alivov, Y.; Morkoç, H. Microwave ferrites, part 1: Fundamental properties. J. Mater. Sci.: Mater. Electron. 2009, 20, 789–834.

    Google Scholar 

  104. Lu, H. M.; Zheng, W. T.; Jiang, Q. Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature. J. Phys. D: Appl. Phys. 2007, 40, 320–325.

    Google Scholar 

  105. Linderoth, S.; Hendriksen, P. V.; Bødker, F.; Wells, S.; Davies, K.; Charles, S. W.; Mørup, S. On spin-canting in maghemite particles. J. Appl. Phys. 1994, 75, 6583–6585.

    Google Scholar 

  106. Batlle, X.; Labarta, A. Finite-size effects in fine particles: Magnetic and transport properties. J. Phys. D: Appl. Phys. 2002, 35, R15–R42.

    Google Scholar 

  107. Peddis, D.; Yaacoub, N.; Ferretti, M.; Martinelli, A.; Piccaluga, G.; Musinu, A.; Cannas, C.; Navarra, G.; Greneche, J. M.; Fiorani, D. Cationic distribution and spin canting in CoFe2O4 nanoparticles. J. Phys.: Condens. Matter 2011, 23, 426004.

    Google Scholar 

  108. Kim, B. H.; Lee, N.; Kim, H.; An, K.; Park, Y. I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S. G.; Na, H. B. et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 2011, 133, 12624–12631.

    Google Scholar 

  109. Sun, Q.-C.; Birkel, C. S.; Cao, J. B.; Tremel, W.; Musfeldt, J. L. Spectroscopic signature of the superparamagnetic transition and surface spin disorder in CoFe2O4 nanoparticles. ACS Nano 2012, 6, 4876–4883.

    Google Scholar 

  110. Zhang, Y.; Liu, Y.; Fei, C. L.; Yang, Z.; Lu, Z. H.; Xiong, R.; Yin, D.; Shi, J. The temperature dependence of magnetic properties for cobalt ferrite nanoparticles by the hydrothermal method. J. Appl. Phys. 2010, 108, 084312.

    Google Scholar 

  111. Zhao, L. J.; Zhang, H. J.; Xing, Y.; Song, S. Y.; Yu, S. Y.; Shi, W. D.; Guo, X. M.; Yang, J. H.; Lei, Y. Q.; Cao, F. Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 2008, 181, 245–252.

    Google Scholar 

  112. Fan, G. L.; Gu, Z. J.; Yang, L.; Li, F. Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique. Chem. Eng. J. 2009, 155, 534–541.

    Google Scholar 

  113. Chen, L. Y.; Shen, Y. M.; Bai, J. F. Large-scale synthesis of uniform spinel ferrite nanoparticles from hydrothermal decomposition of trinuclear heterometallic oxo-centered acetate clusters. Mater. Lett. 2009, 63, 1099–1101.

    Google Scholar 

  114. Ren, G.-H.; Yu, Z.-S. Synthesis of monodisperse Fe3O4 and MnFe2O4 nanospheres by using a solvothermal reduction method. Solid State Phenom. 2012, 181-182, 393396.

    Google Scholar 

  115. Holden, A.; Singer, P. Crystals and Crystal Growing; Anchor Books Doubleday & Company Inc.: Garden City, New York, 1971.

    Google Scholar 

  116. Chen, X. L.; Fan, H. Q.; Liu, L. J. Synthesis and crystallization behavior of lead titanate from oxide precursors by a hydrothermal route. J. Cryst. Growth 2005, 284, 434439.

    Google Scholar 

  117. MacLaren, I.; Ponton, C. B. A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution. J. Eur. Ceram. Soc. 2000, 20, 12671275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Gross.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diodati, S., Pandolfo, L., Caneschi, A. et al. Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res. 7, 1027–1042 (2014). https://doi.org/10.1007/s12274-014-0466-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0466-3

Keywords

Navigation