Skip to main content

Advertisement

Log in

WS2 nanoflakes from nanotubes for electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

Next-generation catalysts for water splitting are crucial towards a renewable hydrogen economy. MoS2 and WS2 represent earth-abundant, noble metal cathode alternatives with high catalytic activity at edge sites. One challenge in their development is to nanostructure these materials in order to achieve increased performance through the creation of additional edge sites. In this work, we demonstrate a simple route to form nanostructured-WS2 using sonochemical exfoliation to break interlayer and intralayer bonds in WS2 nanotubes. The resulting few-layer nanoflakes are ∼100 nm wide with a high density of edge sites. WS2 nanoflakes are utilized as cathodes for the hydrogen evolution reaction (HER) and exhibit superior performance to WS2 nanotubes and bulk particles, with a lower onset potential, shallower Tafel slope and increased current density. Future work may employ ultra-small nanoflakes, dopant atoms, or graphene hybrids to further improve electrocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  PubMed  Google Scholar 

  2. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  PubMed  CAS  ADS  Google Scholar 

  3. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239.

    Article  CAS  Google Scholar 

  4. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  PubMed  CAS  ADS  Google Scholar 

  5. Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009, 140, 219–231.

    Article  ADS  Google Scholar 

  6. Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Article  PubMed  CAS  ADS  Google Scholar 

  7. Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  PubMed  CAS  Google Scholar 

  8. Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in WS2 monolayers. arXiv:1208.1325 [cond-mat.mes-hall], 2012.

    Google Scholar 

  9. Brorson, M.; Carlsson, A.; Topsoe, H. The morphology of MoS2, WS2, Co-Mo-S, Ni-Mo-S and Ni-W-S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM. Catal. Today 2007, 123, 31–36.

    Article  CAS  Google Scholar 

  10. Wu, Z.; Fang, B.; Bonakdarpour, A.; Sun, A.; Wilkinson, D. P.; Wang, D. WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 2012, 125, 59–66.

    Article  CAS  Google Scholar 

  11. Bhandavat, R.; David, L.; Singh, G. Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1523–1530.

    Article  CAS  Google Scholar 

  12. Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.; Eda, G.; et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. arXiv:1212.1513, 2013.

    Google Scholar 

  13. Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 2010, 49, 4059–4062.

    Article  CAS  Google Scholar 

  14. Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446.

    Article  CAS  ADS  Google Scholar 

  15. Zak, A.; Sallacan-Ecker, L.; Margolin, A.; Feldman, Y.; Popovitz-Biro, R.; Albu-Yaron, A.; Genut, M.; Tenne, R. Scaling up of the WS2 nanotubes synthesis. Fuller. Nanotube. Car. N. 2011, 19, 18–26.

    Article  CAS  Google Scholar 

  16. Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 2010, 5, 321–325.

    Article  PubMed  CAS  ADS  Google Scholar 

  17. Zhou, K.-G.; Mao, N.-N.; Wang, H.-X.; Peng, Y.; Zhang, H.-L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 2011, 50, 10839–10842.

    Article  CAS  Google Scholar 

  18. Yang, D.; Frindt, R. F. Li-intercalation and exfoliation of WS2. J. Phys. Chem. Sol. 1996, 57, 1113–1116.

    Article  CAS  ADS  Google Scholar 

  19. Krause, M.; Viršek, M.; Remškar, M.; Sallacan, N.; Fleischer, N.; Chen, L.; Hatto, P.; Kolitsch, A.; Möller, W. Diameter and morphology dependent Raman signatures of WS2 nanostructures. ChemPhysChem 2009, 10, 2221–2225.

    Article  PubMed  CAS  Google Scholar 

  20. Krause, M.; Viršek, M.; Remškar, M.; Kolitsch, A.; Möller, W. Diameter dependent Raman scattering of WS2 nanotubes. Phys. Status. Solidi. B 2009, 246, 2786–2789.

    Article  CAS  ADS  Google Scholar 

  21. Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutschinson, J. L.; Tenne, R. Bulk synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 1996, 118, 5362–5367.

    Article  CAS  Google Scholar 

  22. Molina-Sanchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

    Article  ADS  Google Scholar 

  23. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  PubMed  CAS  Google Scholar 

  24. Wieting, T. J.; Verble, J. L. Interlayer bonding and lattice-vibrations of β-GaSe. Phys. Rev. B 1972, 5, 1473–1479.

    Article  ADS  Google Scholar 

  25. Staiger, M.; Rafailov, P.; Gartsman, K.; Telg, H.; Krause, M.; Radovsky, G.; Zak, A.; Thomsen, C. Excitonic resonances in WS2 nanotubes. Phys. Rev. B 2012, 86, 165423.

    Article  ADS  Google Scholar 

  26. Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C. J. F. Electronic-structure of MoSe2, MoS2, and WSe2. 1. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 1987, 35, 6195–6202.

    Article  CAS  ADS  Google Scholar 

  27. Coehoorn, R.; Hass, C.; de Groot, R. A. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 1987, 35, 6203–6206.

    Article  CAS  ADS  Google Scholar 

  28. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  PubMed  ADS  Google Scholar 

  29. Frey, G. L.; Elani, S.; Homyonfer, M.; Feldman, Y.; Tenne, R. Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W). Phys. Rev. B 1998, 57, 6666–6671.

    Article  CAS  ADS  Google Scholar 

  30. Kam, K. K.; Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group-VI transitionmetal dichalcogenides. J. Phys. Chem. 1982, 86, 463–467.

    Article  CAS  Google Scholar 

  31. Ding, Y.; Wang, Y.; Ni, J.; Shi, L.; Shi, S.; Tang, W. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers. Physica B 2011, 406, 2254–2260.

    Article  CAS  ADS  Google Scholar 

  32. Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.

    Article  PubMed  CAS  ADS  Google Scholar 

  33. Liang, Y.; Li, Y.; Wang, H.; Dai, H. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, H.; Dai, H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, C.L., Feng, J., Li, Y. et al. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 6, 921–928 (2013). https://doi.org/10.1007/s12274-013-0369-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0369-8

Keywords