Skip to main content
Log in

Fabrication of patterned boron carbide nanowires and their electrical, field emission, and flexibility properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Large-area patterned boron carbide nanowires (B4C NWs) have been synthesized using chemical vapor deposition (CVD). The average diameter of B4C NWs is about 50 nm, with a mean length of 20 μm. The B4C NWs have a single-crystal structure and conductivities around 5.1 × 10−2 Ω−1·cm−1. Field emission measurements of patterned B4C NWs films show that their turn-on electric field is 2.7 V/μm, lower than that of continuous B4C NWs films. A single nanowire also exhibits excellent flexibility under high-strain bending cycles without deformation or failure. All together, this suggests that B4C NWs are a promising candidate for flexible cold cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wood, C.; Emin, D. Conduction mechanism in boron carbide. Phys. Rev. B 1984, 29, 4582–4587.

    Article  CAS  Google Scholar 

  2. Zhou, M. J.; Wong, S. F.; Ong, C. W.; Li, Q. Microstructure and mechanical properties of B4C films deposited by ion beam sputtering. Thin Solid Films 2007, 516, 336–339.

    Article  CAS  Google Scholar 

  3. Knotek, O.; Lugscheider, E.; Siry, C. W. Tribological properties of B-C thin films deposited by magnetron-sputter-ion plating method. Surf. Coat. Technol. 1997, 91, 167–173.

    Article  CAS  Google Scholar 

  4. Aselage, T. L.; Emin, D.; McCready, S. S.; Duncan, R. V. Large enhancement of boron carbides’ Seebeck coeffiecients through vibrational softening. Phys. Rev. Lett. 1998, 81, 2316–2319.

    Article  CAS  Google Scholar 

  5. Caruso, A. N.; Dowben, P. A.; Balkir, S.; Schemm, N.; Osberg, K.; Fairchild, R. W.; Flores, O. B.; Balaz, S.; Harken, A. D.; Robertson, B. W.; Brand, J. I. The all boron carbide diode neutron detector: Comparison with theory. Mater. Sci. Eng. B 2006, 135, 129–133.

    Article  CAS  Google Scholar 

  6. Tao, X. Y.; Dong, L. X; Wang, X. N.; Zhang, W. K.; Nelson, B. J.; Li, X. D. B4C-nanowires/carbon-microfiber hybrid structures and composites from cotton T-shirts. Adv. Mater. 2010, 22, 2055–2059.

    Article  CAS  Google Scholar 

  7. Tian, J. F.; Xu, Z. C.; Shen, C. M.; Liu, F.; Xu, N. S.; Gao, H. J. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale 2010, 2, 1375–1389.

    Article  CAS  Google Scholar 

  8. Mondal, S.; Banthia, A. K. Low-temperature synthetic route for boron carbide. J. Eur. Ceram. Soc. 2005, 25, 287–291.

    Article  CAS  Google Scholar 

  9. Bao, L. H.; Li, C.; Tian, Y.; Tian, J. F.; Hui, C.; Wang, X. J.; Shen, C. M.; Gao, H. J. Synthesis and photoluminescence property of boron carbide nanowires. Chin. Phys. B 2008, 17, 4585–4591.

    Article  CAS  Google Scholar 

  10. Bao, L. H.; Li, C.; Tian, Y.; Tian, J. F.; Hui, C.; Wang, X. J.; Shen, C. M.; Gao, H. J. Single crystalline boron carbide nanobelts: Synthesis and characterization. Chin. Phys. B 2008, 17, 4247–4252.

    Article  CAS  Google Scholar 

  11. McIlroy, D. N.; Zhang, D.; Kranov, Y.; Norton, M. G. Nanosprings. Appl. Phys. Lett. 2001, 79 1540–1542.

    Article  CAS  Google Scholar 

  12. Tian, J. F.; Bao, L. H.; Wang, X. J.; Hui, C.; Liu, F.; Li, C.; Shen, C. M.; Wang, Z. L.; Gu, C. Z.; Gao, H. J. Probing field emission from boron carbide nanowires. Chin. Phys. Lett. 2008, 25, 3463–3466.

    Article  CAS  Google Scholar 

  13. Li, C.; Tian, Y.; Hui, C.; Tian, J. F.; Bao, L. H.; Shen C. M.; Gao, H. J. Field emission properties of patterned boron nanocones. Nanotechnology 2010, 21, 325705.

    Article  Google Scholar 

  14. Hui, C.; Shen, C. M.; Yang, T. Z.; Bao, L. H.; Tian, J. F.; Ding, H.; Li, C.; Gao, H. J. Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C 2008, 112, 11336–11339.

    Article  CAS  Google Scholar 

  15. Ma, R. Z.; Bando, Y. Investigation on growth of boron carbide nanowires. Chem. Mater. 2002, 14, 4403–4407.

    Article  CAS  Google Scholar 

  16. Schmechel, R.; Werheit, H. Structural defects of some icosahedral boron-rich solids and their correlation with the electronic properties. J. Solid State Chem. 2000, 154, 61–67.

    Article  CAS  Google Scholar 

  17. Zhang, Z. Y.; Yao, K.; Liu, Y.; Jin, C. H.; Liang, X. L.; Chen, Q.; Peng, L. M. Quantitative analysis of current-voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 2007, 17, 2478–2489.

    Article  CAS  Google Scholar 

  18. Liu, F.; Su, Z. J.; Li, L.; Mo, F. Y.; Jin, S. Y.; Deng, S. Z.; Chen, J.; Shen, C. M.; Gao, H. J.; Xu, N. S. Effect of contact mode on the electrical transport and field-emission performance of individual boron nanowires. Adv. Funct. Mater. 2010, 20, 1994–2003.

    Article  CAS  Google Scholar 

  19. Tang, C. C.; Bando, Y.; Huang, Y.; Yue, S. L.; Gu, C. Z.; Xu, F. F.; Golberg, D. Fluorination and electrical conductivity of BN nanotubes. J. Am. Chem. Soc. 2005, 127, 6552–6553.

    Article  CAS  Google Scholar 

  20. Tian, J. F.; Hui, C.; Bao, L. H.; Li, C.; Tian, Y.; Ding, H.; Shen, C. M.; Gao, H. J. Patterned boron nanowires and field emission properties. Appl. Phys. Lett. 2009, 94, 083101.

    Article  Google Scholar 

  21. Tian, Y.; Shen, C. M.; Li, C.; Shi, X. Z.; Huang, Y.; Gao, H. J. Synthesis of monodisperse CoPt3 nanocrystals and their catalytic behavior for growth of boron nanowires. Nano Res. 2011, 4, 780–787.

    Article  CAS  Google Scholar 

  22. Wang, X. J.; Tian, J. F.; Yang, T. Z.; Bao, L. H.; Hui, C.; Liu, F.; Shen, C. M.; Gu, C. Z.; Xu, N. S.; Gao, H. J. Single crystalline boron nanocones: Electric transport and field emission properties. Adv. Mater. 2007, 19, 4480–4485.

    Article  CAS  Google Scholar 

  23. Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 2003, 83, 144–146.

    Article  CAS  Google Scholar 

  24. Fowler, R. H.; F. R. S.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. London, Ser. A 1928, 119, 173–181.

    Article  CAS  Google Scholar 

  25. Chen, M. W.; McCauley, J. W.; Hemker, K. J. Shock-induced localized amorphization in boron carbide. Science 2003, 299, 1563–1566.

    Article  CAS  Google Scholar 

  26. Tian, J. F.; Cai, J. M.; Hui, C.; Zhang, C. D.; Bao, L. H.; Gao, M.; Shen, C. M.; Gao, H. J. Boron nanowires for flexible electronics. Appl. Phys. Lett. 2008, 93, 122105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Liu, F., Luo, Q. et al. Fabrication of patterned boron carbide nanowires and their electrical, field emission, and flexibility properties. Nano Res. 5, 896–902 (2012). https://doi.org/10.1007/s12274-012-0273-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0273-7

Keywords

Navigation