Skip to main content
Log in

Facile synthesis of LiCoO2 nanowires with high electrochemical performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cobalt precursor Co(CO3)0.35Cl0.2(OH)1.1 nanowire bunches have been synthesized by a hydrothermal method and transformed into Co3O4 nanowires by calcination at 500 °C for 3 h. The Co3O4 nanowires were then mixed with LiOH and formed the LiCoO2 nanowires by calcination at 750 °C. High resolution transmission electron microscopy revealed that the LiCoO2 nanowires were composed of nanoparticles with most of the nanoparticles having exposed (010) planes. The electrochemical performance of the LiCoO2 nanowires was thoroughly investigated by galvanostatic tests. The as-prepared LiCoO2 nanowires exhibited excellent rate capability and satisfactory cycle stability, where the charge and discharge capacity still stabilized at 100 mA·h/g at a rate of 1000 mA/g after 100 cycles. The favorable electrochemical performance of the LiCoO2 nanowires may result from their one-dimensional nanostructure and the exposure of (010) planes, since the (010) plane is electrochemically active for layered LiCoO2 with the α-NaFeO2 structure and favors fast Li+ transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, L. Y.; Xiong, Z. H.; Ouyang, C. Y.; Shi, S. Q.; Ji. Y. H.; Lei, M. S.; Wang, Z. X; Li, H.; Huang, X. J. Chen, L. Q. Ab initio studies on the stability and electronic structure of LiCoO2 (003) surfaces. Phys. Rev. B 2005, 71, 125433.

    Article  Google Scholar 

  2. Jiao, F.; Bao, J. L.; Hill, A. H.; Bruce, P. G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angew. Chem. Int. Edit. 2008, 47, 9711–9716.

    Article  CAS  Google Scholar 

  3. Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.

    Article  CAS  Google Scholar 

  4. Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

    Article  CAS  Google Scholar 

  5. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  6. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

    Article  CAS  Google Scholar 

  7. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Edit. 2008, 47, 2930–2946.

    Article  CAS  Google Scholar 

  8. Kim, M. G.; Cho, J. Reversible and high-capacity nano-structured electrode materials for Li-ion batteries. Adv. Funct. Mater. 2009, 19, 1497–1514.

    Article  CAS  Google Scholar 

  9. Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H. S.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 2007, 129, 7444–7452.

    Article  CAS  Google Scholar 

  10. Jo, M.; Hong, Y. S.; Choo, J.; Cho, J. Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries, J. Electrochem. Soc. 2009, 156, A430–A434.

    Article  CAS  Google Scholar 

  11. Qian, X.; Cheng, X.; Wang, Z. Y.; Huang, X. J.; Guo, R.; Mao, D. L.; Chang, C. K.; Song, W. J. The preparation of LiCoO2 nanoplates via a hydrothermal process and the investigation of their electrochemical behavior at high rates. Nanotechnology 2009, 20, 115608.

    Article  Google Scholar 

  12. Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1–7.

    Article  Google Scholar 

  13. Li, X. X.; Cheng, F. Y.; Guo, B.; Chen, J. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 2005, 109, 14017–14024.

    Article  CAS  Google Scholar 

  14. Chen, J.; Cheng, F. Y. Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 2009, 42, 713–723.

    Article  CAS  Google Scholar 

  15. Kim, D. K.; Muralidharan, P.; Lee, H. W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui. Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948–3952.

    Article  CAS  Google Scholar 

  16. Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. S. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 2009, 9, 1045–1051.

    Article  CAS  Google Scholar 

  17. Xiao, X. L.; Wang, L.; Wang, D. S.; He, X. M.; Peng, Q.; Li, Y. D.; Hydrothermal synthesis of orthorhombic LiMnO2 nanoparticles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.

    Article  CAS  Google Scholar 

  18. Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Edit. 2007, 46, 750–753.

    Article  CAS  Google Scholar 

  19. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui. Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.

    Article  CAS  Google Scholar 

  20. Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C. Y.; Zhang, K. L.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.

    Article  CAS  Google Scholar 

  21. Li, J. M.; Wan, W.; Zhou, H. H.; Li, J. J.; Xu, D. S. Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Chem. Commun. 2011, 47, 3439–3441.

    Article  CAS  Google Scholar 

  22. Yang, Y. W.; Chen, Y. B.; Liu, F.; Chen, X. Y.; Wu, Y. C. Template-based fabrication and electrochemical performance of CoSb nanowire arrays. Electrochim. Acta 2011, 56, 6420–6425.

    Article  CAS  Google Scholar 

  23. Wang, Z. H.; Chen, X. Y.; Zhang, M.; Qian, Y. T. Synthesis of Co3O4 nanorod bunches from a single precursor Co(CO3)0.35Cl0.20(OH)1.10. Solid State Sci. 2005, 7, 13–15.

    Article  CAS  Google Scholar 

  24. Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z.Y.; Sun, S. G. Crystal habit-tuned nanoplate material of Li[Li1/3−2x/3NixMn2/3−x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010, 22, 4364–4367.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Yang, L., Zhao, H. et al. Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Res. 5, 27–32 (2012). https://doi.org/10.1007/s12274-011-0181-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0181-2

Keywords

Navigation