Skip to main content
Log in

Hot-electron effects in InAs nanowire Josephson junctions

Nano Research Aims and scope Submit manuscript

Abstract

The controlled tailoring of the energy distribution in an electron system opens the way to interesting new physics and device concepts, as demonstrated by research on metallic nanodevices during recent years. Here we investigate how Josephson coupling in a superconductor-InAs nanowire junction can be tuned by means of hot-electron injection and we show that a complete suppression of superconductive effects can be achieved using a power as low as 100 pW. Nanowires offer a novel design freedom as they allow axial and radial heterostructures to be defined as well as control over doping profiles, which can be crucial in the development of devices—such as nanorefrigerators—where precisely controlled and predictable energy barriers are mandatory. Our work provides estimates for unknown key thermal and electrical parameters, such as the electron-phonon coupling, in our InAs nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. de Gennes, P. G. Superconductivity of Metals and Alloys; W. A. Benjamin: New York, 1966.

    Google Scholar 

  2. Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 1964, 19, 1228–1231.

    Google Scholar 

  3. Giazotto, F.; Peltonen, J. T.; Meschke, M.; Pekola, J. P. Superconducting quantum interference proximity transistor. Nature Phys. 2010, 6, 254–259.

    Article  CAS  Google Scholar 

  4. Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 1979, 51, 101–159.

    Article  Google Scholar 

  5. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486–491.

    Article  CAS  Google Scholar 

  6. Björk, M. T.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional steeplechase for electrons realized. Nano Lett. 2002, 2, 87–89.

    Article  Google Scholar 

  7. Roddaro, S.; Fuhrer, A.; Brusheim, P.; Fasth, C.; Xu, H. Q.; Samuelson, L.; Xiang, J.; Lieber, C. M. Spin states of holes in Ge/Si nanowire quantum dots. Phys. Rev. Lett. 2008, 101, 186802.

    Article  CAS  Google Scholar 

  8. Hoffmann, E. A.; Nilsson, H. A.; Matthews, J. E.; Nakpathomkun, N.; Persson, A. I.; Samuelson, L.; Linke, H. Measuring temperature gradients over nanometer length scales. Nano Lett. 2009, 9, 779–783.

    Article  CAS  Google Scholar 

  9. Xiang, J.; Vidan, A.; Tinkham, M.; Westervelt, R. M.; Lieber, C. M. Ge/Si nanowire mesoscopic Josephson junctions. Nat. Nanotechnol. 2006, 1, 208–213.

    Article  CAS  Google Scholar 

  10. Doh, Y. -J.; van Dam, J. A.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; De Franceschi, S. Tunable supercurrent through semiconductor nanowires. Science 2005, 309, 272–275.

    Article  CAS  Google Scholar 

  11. Frielinghaus, R.; Batov, I. E.; Weides, M.; Kohlstedt, H.; Calarco, R.; Schäpers, Th. Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Appl. Phys. Lett. 2010, 96, 132504.

    Article  Google Scholar 

  12. van Dam, J.; Nazarov, Y. V.; Bakkers, E. P. A. M.; De Franceschi, S.; Kouwenhoven, L. P. Supercurrent reversal in quantum dots. Nature 2006, 442, 667–670.

    Article  Google Scholar 

  13. Sand-Jespersen, T.; Paaske, J.; Andersen, B. M.; Grove-Rasmussen, K.; Jørgensen, H. I.; Aagesen, M.; Sørensen, C. B.; Lindelof, P. E.; Flensberg, K.; Nygård, J. Kondo-enhanced Andreev tunneling in InAs nanowire quantum dots. Phys. Rev. Lett. 2007, 99, 126603.

    Article  CAS  Google Scholar 

  14. Wilhelm, F. K.; Schøn, G.; Zaikin, A. D. Mesoscopic superconducting-normal metal-superconducting transistor. Phys. Rev. Lett. 1998, 81, 1682–1685.

    Article  CAS  Google Scholar 

  15. Morpurgo, A. F.; Klapwijk, T. M.; van Wees, B. J. Hot electron tunable supercurrent. Appl. Phys. Lett. 1998, 72, 966–968.

    Article  CAS  Google Scholar 

  16. Schäpers, T.; Malindretos, J.; Neurohr, K.; Lachenmann, S.; van der Hart, A.; Crecelius, G.; Hardtdegen, H.; Lüth, H.; Golubov, A. A. Demonstration of a current-controlled three terminal Nb/InxGa1−x As/InP Josephson contact. Appl. Phys. Lett. 1998, 73, 2348–2350.

    Article  Google Scholar 

  17. Baselmans, J. J. A.; Morpurgo, A. F.; van Wees, B. J.; Klapwijk, T. M. Reversing the direction of the supercurrent in a controllable Josephson junction. Nature 1999, 397, 43–45.

    Article  CAS  Google Scholar 

  18. Crosser, M. S.; Virtanen, P.; Heikkilä, T. T.; Birge, N. O. Supercurrent-induced temperature gradient across a nonequilibrium SNS Josephson junction. Phys. Rev. Lett. 2006, 96 167004.

    Article  CAS  Google Scholar 

  19. Giazotto, F.; Heikkilä, T. T.; Taddei, F.; Fazio, R.; Pekola, J. P.; Beltram, F. Tailoring Josephson coupling through superconductivity-induced nonequilibrium. Phys. Rev. Lett. 2004, 92, 137001.

    Article  CAS  Google Scholar 

  20. Savin, A. M.; Pekola, J. P.; Flyktman, J. T.; Anthore, A.; Giazotto, F. Cold electron Josephson transistor. Appl. Phys. Lett. 2004, 84, 4179–4181.

    Article  CAS  Google Scholar 

  21. Tirelli, S.; Savin, A. M.; Pascual Garcia, C.; Pekola, J. P.; Beltram, F.; Giazotto, F. Manipulation and generation of supercurrent in out-of-equilibrium Josephson tunnel nanojunctions. Phys. Rev. Lett. 2008, 101, 077004.

    Article  CAS  Google Scholar 

  22. Giazotto, F.; Heikkilä, T. T.; Luukanen, A.; Savin, A. M.; Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 2006, 78, 217–274.

    Article  CAS  Google Scholar 

  23. Jiang, X.; Xiong, Q.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007, 7, 3214–3218.

    Article  CAS  Google Scholar 

  24. Roddaro, S.; Nilsson, K.; Astromskas, G.; Samuelson, L.; Wernersson, L. -E.; Karlström, O.; Wacker, A. InAs nanowire metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 2008, 92, 253509.

    Article  Google Scholar 

  25. Heikkilä, T. T.; Särkkä, J.; Wilhelm, F. K. Supercurrentcarrying density of states in diffusive mesoscopic Josephson weak links. Phys. Rev. B 2002, 66, 184513.

    Article  Google Scholar 

  26. Kulik, I. O.; Omelyan’chuk, A. N. Josephson effect in superconductive bridges: Microscopic theory. Fiz. Nizk. Temp. 1978, 4, 296–311 [Sov. J. Low Temp. Phys. 1978, 4, 142–156].

    Google Scholar 

  27. Courtois, H.; Meschke, M.; Peltonen, J. T.; Pekola, J. P. Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 2008, 101, 067002.

    Article  CAS  Google Scholar 

  28. Pascual García, C.; Giazotto F. Josephson current in nanofabricated V/Cu/V mesoscopic junctions. Appl. Phys. Lett. 2009, 94, 132508.

    Article  Google Scholar 

  29. Clark, T. D.; Prance, R. J.; Grassie, A. D. C. Feasibility of hybrid Josephson field effect transistors. J. Appl. Phys. 1980, 51, 2736–2743.

    Article  CAS  Google Scholar 

  30. Akazaki, T.; Takayanagi, H.; Nitta, J.; Enoki, T. A Josephson field effect transistor using an InAs-insertedchannel In0.52Al0.48As/In0.53Ga0.47As inverted modulationdoped structure. Appl. Phys. Lett. 1996, 68, 418–420.

    Article  CAS  Google Scholar 

  31. Meschke, M.; Peltonen, J. T.; Courtois, H.; Pekola J. P. Calorimetric readout of a superconducting proximity-effect thermometer. J. Low Temp. Phys. 2009, 154, 190–198.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefano Roddaro or Francesco Giazotto.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roddaro, S., Pescaglini, A., Ercolani, D. et al. Hot-electron effects in InAs nanowire Josephson junctions. Nano Res. 4, 259–265 (2011). https://doi.org/10.1007/s12274-010-0077-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0077-6

Keywords

Navigation