Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Nano Research
  3. Article

Challenges and prospects of nanopillar-based solar cells

  • Review Article
  • Open access
  • Published: 11 November 2009
  • Volume 2, pages 829–843, (2009)
  • Cite this article
Download PDF

You have full access to this open access article

Nano Research Aims and scope
Challenges and prospects of nanopillar-based solar cells
Download PDF
  • Zhiyong Fan1,2,3,
  • Daniel J. Ruebusch1,2,3,
  • Asghar A. Rathore1,2,3,
  • Rehan Kapadia1,2,3,
  • Onur Ergen1,2,3,
  • Paul W. Leu1,2,3 &
  • …
  • Ali Javey1,2,3 
  • 3926 Accesses

  • 206 Citations

  • 6 Altmetric

  • Explore all metrics

Abstract

Materials and device architecture innovations are essential for further enhancing the performance of solar cells while potentially enabling their large-scale integration as a viable source of alternative energy. In this regard, tremendous research has been devoted in recent years with continuous progress in the field. In this article, we review the recent advancements in nanopillar-based photovoltaics while discussing the future challenges and prospects. Nanopillar arrays provide unique advantages over thin films in the areas of optical properties and carrier collection, arising from their three-dimensional geometry. The choice of the material system, however, is essential in order to gain the advantage of the large surface/interface area associated with nanopillars with the constraints different from those of the thin film devices.

Article PDF

Download to read the full article text

Similar content being viewed by others

Black-Silicon on Micropillars with Minimal Surface Area Enlargement to Enhance the Performance of Silicon Solar Cells

Article Open access 07 November 2016

One-Dimensional Nano-structured Solar Cells

Chapter © 2016

Nanoscience and Nanotechnologies for Photovoltaics

Chapter © 2022

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Solar Cells
  • Nanofabrication and Nanopatterning
  • Nanomaterial
  • Photovoltaics
  • Nanowires
  • Nanotechnology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489–493.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Wang, D.; Dai, H. Germanium nanowires: From synthesis, surface chemistry, and assembly to devices. Appl. Phys. A-Mater. 2006, 85, 217–225.

    Article  CAS  ADS  Google Scholar 

  5. Javey, A. The 2008 Kavli Prize in Nanoscience: Carbon nanotubes. ACS Nano 2008, 2, 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  6. Thelander, C.; Rehnstedt, C.; Froberg, L. E.; Lind, E.; Martensson, T.; Caroff, P.; Lowgren, T.; Ohlsson, B. J.; Samuelson, L.; Wernersson, L. E. Development of a vertical wrap-gated InAs FET. IEEE T. Electron Dev. 2008, 11, 3030–3036.

    Article  ADS  Google Scholar 

  7. Ford, A. C.; Ho, J. C.; Chueh, Y. L.; Tseng, Y. C.; Fan, Z. Y.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360–365.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Zhong, Z. H.; Qian, F.; Wang, D. L.; Lieber, C. M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 2003, 3, 343 346.

    Article  Google Scholar 

  9. Qian, F.; Gradecak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Fan, Z. Y.; Chang, P. C.; Lu, J. G.; Walter, E. C.; Penner, R. M.; Lin, C. H.; Lee, H. P. Photoluminescence and polarized photodetection of single ZnO nanowires. Appl. Phys. Lett. 2004, 85, 6128–6130.

    Article  CAS  ADS  Google Scholar 

  11. Fan, Z. Y.; Wang, D. W.; Chang, P. C.; Tseng, W. Y.; Lu, J. G. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 2004, 85, 5923–5925.

    Article  CAS  ADS  Google Scholar 

  12. Fan, Z. Y.; Lu, J. G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, 86, 123–510.

    Google Scholar 

  13. Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.

    Article  CAS  ADS  Google Scholar 

  14. Zhang, D. H.; Liu, Z. Q.; Li, C.; Tang, T.; Liu, X. L.; Han, S.; Lei, B.; Zhou, C. W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004, 4, 1919–1924.

    Article  CAS  ADS  Google Scholar 

  15. Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Razavi, H.; Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 11066–11070.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Chen, P.; Shen, G.; Zhou, C. Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE T. Nanotechnol. 2008, 7, 668–682.

    Article  ADS  Google Scholar 

  17. Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Yan, Q.; Cheng, H.; Zhou, W.; Hng, H. H.; Yin, F.; Boey, F. Y. C.; Ma, J. A simple chemical approach for PbTe nanowires with enhanced thermoelectric properties. Chem. Mat. 2008, 20, 6298–6300.

    Article  CAS  Google Scholar 

  19. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242 246.

    PubMed  Google Scholar 

  20. Fan, Z. Y.; Razavi, H.; Do, J. W.; Moriwaki, A.; Ergen, O.; Chueh, Y. L.; Leu, P. W.; Ho, J. C.; Takahashi, T.; Reichertz, L. A.; Neale, S.; Yu, K.; Wu, M.; Ager, J. W.; Javey, A. Three-dimensional nanopillar-array photovoltaics on lowcost and flexible substrates. Nat. Mater. 2009, 8, 648–653.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148–154.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Garnett, E. C.; Yang, P. D. Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 2008, 130, 9224–9225.

    Article  CAS  PubMed  Google Scholar 

  23. Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 2008, 8, 710–714.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Martinson, A. B. F.; Elam, J. W.; Liu, J.; Pellin, M. J.; Marks, T. J.; Hupp, J. T. Radial electron collection in dyesensitized solar cells. Nano Lett. 2008, 8, 2862–2866.

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Stelzner, T.; Pietsch, M.; Andra, G.; Falk, F.; Ose, E.; Christiansen, S. Silicon nanowire-based solar cells. Nanotechnology 2008, 19, 295–203.

    Article  Google Scholar 

  26. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 885–889.

  27. Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B. A.; Sulima, O.; Rand, J. Silicon nanowire solar cells. Appl. Phys. Lett. 2007, 91, 233117.

    Article  ADS  Google Scholar 

  28. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Song, M. Y.; Ahn, Y. R.; Jo, S. M.; Kim, D. Y.; Ahn, J. P. TiO2 single-crystalline nanorod electrode for quasi-solidstate dye-sensitized solar cells. Appl. Phys. Lett. 2005, 87, 113113.

    Article  ADS  Google Scholar 

  30. Colombo, C.; Heiss, M.; Gratzel, M.; Morral, A. F. I. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009, 94, 173108.

    Article  ADS  Google Scholar 

  31. Kempa, T. J.; Tian, B.; Kim, D. R.; Hu, J.; Zheng, X.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Tang, Y. B.; Chen, Z. H.; Song, H. S.; Lee, C. S.; Cong, H. T.; Cheng, H. M.; Zhang, W. J.; Bello, I.; Lee, S. T. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett. 2008, 8, 4191–4195.

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D. ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 2007, 111, 18451–18456.

    Article  CAS  Google Scholar 

  34. Peng, K. Q.; Xu, Y.; Wu, Y.; Yan, Y. J.; Lee, S. T.; Zhu, J. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005, 1, 1062–1067.

    Article  CAS  PubMed  Google Scholar 

  35. Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 2008, 8, 2638–2642.

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282.

    Article  PubMed  ADS  Google Scholar 

  37. Stiebig, H.; Senoussaoui, N.; Zahren, C.; Haase, C.; Muller, J. Silicon thin-film solar cells with rectangularshaped grating couplers. Prog. Photovoltaics 2006, 14, 13–24.

    Article  CAS  Google Scholar 

  38. Fahrenbruch, A. L.; Bube, R. H. In Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion. Academic Press: New York, 1983.

    Google Scholar 

  39. Kayes, B. M.; Atwater, H. A.; Lewis, N. S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 2005, 97, 114302.

    Article  ADS  Google Scholar 

  40. Kosyachenko, L. A.; Savchuk, A. I.; Grushko, E. V. Dependence of efficiency of thin-film CdS/CdTe solar cell on parameters of absorber layer and barrier structure. Thin Solid Films 2009, 517, 2386 2391.

    Article  Google Scholar 

  41. van Nieuwenhuysen, K.; Duerinckx, F.; Kuzma, I.; Payo, M. R.; Beaucarne, G.; Poortmans, J. Epitaxially grown emitters for thin film crystalline silicon solar cells. Thin Solid Films 2008, 517, 383–384.

    Article  ADS  Google Scholar 

  42. Marsillac, S.; Parikh, V. Y.; Compaan, A. D. Ultra-thin bifacial CdTe solar cell. Sol. Energ. Mat. Sol. C. 2007, 91, 1398–1402.

    Article  CAS  Google Scholar 

  43. Romeo, A.; Khrypunov, G.; Galassini, S.; Zogg, H.; Tiwari, A. N. Bifacial configurations for CdTe solar cells. Sol. Energ. Mat. Sol. C. 2007, 91, 1388–1391.

    Article  CAS  Google Scholar 

  44. Beaucarne, G.; Duerinckx, F.; Kuzma, I.; van Nieuwenhuysen, K.; Kim, H. J.; Poortmans, J. Epitaxial thin-film Si solar cells. Thin Solid Films 2006, 533–542.

  45. Schermer, J. J.; Mulder, P.; Bauhuis, G. J.; Larsen, P. K.; Oomen, G.; Bongers, E. Thin-film GaAs epitaxial life-off solar cells for space applications. Prog. Photovoltaics 2005, 13, 587–596.

    Article  CAS  Google Scholar 

  46. Bridge, C. J.; Dawson, P.; Buckle, P. D.; Ozsan, M. E. Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe. J. Appl. Phys. 2000, 88, 6451–6456.

    Article  CAS  ADS  Google Scholar 

  47. Gunawan, O.; Guha, S. Characteristics of vapor-liquid-solid grown silicon nanowire solar cells. Sol. Energ. Mat. Sol. C. 2009, 93, 1388–1393.

    Article  CAS  Google Scholar 

  48. Anandan, S.; Wen, X. G.; Yang, S. H. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 2005, 93, 35–40.

    Article  CAS  Google Scholar 

  49. Jiu, J. T.; Wang, F. M.; Isoda, S.; Adachi, M. Highly efficient dye-sensitized solar cells based on single crystalline TiO2 nanorod film. Chem. Lett. 2005, 34, 1506–1507.

    Article  CAS  Google Scholar 

  50. Adachi, M.; Murata, Y.; Takao, J.; Jiu, J. T.; Sakamoto, M.; Wang, F. M. Highly efficient dyesensitized solar cells with a titania thin-film electrode composed of a network structure of singlecrystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 2004, 126, 14943–14949.

    Article  CAS  PubMed  Google Scholar 

  51. Sharma, A. K.; Agarwal, S. K.; Singh, S. N. Determination of front surface recombination velocity of silicon solar cells using the short-wavelength spectral response. Sol. Energ. Mat. Sol. C. 2007, 91, 1515–1520.

    Article  CAS  Google Scholar 

  52. Sabbah, A. J.; Riffe, D. M. Measurement of silicon surface recombination velocity using ultrafast pumpprobe reflectivity in the near infrared. J. Appl. Phys. 2000, 88, 6954–6956.

    Article  CAS  ADS  Google Scholar 

  53. Rowe, M. W.; Liu, H. L.; Williams, G. P.; Williams, R. T. Picosecond photoelectron-spectroscopy of excited-states at Si(111) √3 × √3R30°-B, Si(111)7×7, Si(100)2×1, and laser-annealed Si(111)1×1 surfaces. Phys. Rev. B 1993, 47, 2048–2064.

    Article  CAS  ADS  Google Scholar 

  54. Passlack, M.; Hong, M.; Mannaerts, J. P.; Kwo, J. R.; Tu, L. W. Recombination velocity at oxide-GaAs interfaces fabricated by in situ molecular beam epitaxy. Appl. Phys. Lett. 1996, 68, 3605–3607.

    Article  CAS  ADS  Google Scholar 

  55. Jastrzebski, L.; Lagowski, J.; Gatos, H. C. Application of scanning electron-microscopy to determination of surface recombination velocity: GaAs. Appl. Phys. Lett. 1975, 27, 537–539.

    Article  CAS  ADS  Google Scholar 

  56. Rosenwaks, Y.; Burstein, L.; Shapira, Y.; Huppert, D. Effects of reactive versus unreactive metals on the surface recombination velocity at Cds and CdSe(1120) interfaces. Appl. Phys. Lett. 1990, 57, 458–460.

    Article  CAS  ADS  Google Scholar 

  57. Delgadillo, I.; Vargas, M.; CruzOrea, A.; AlvaradoGil, J. J.; Baquero, R.; SanchezSinencio, F.; Vargas, H. Photoacoustic CdTe surface characterization. Appl. Phys. B-Lasers O. 1997, 64, 97–101.

    Article  CAS  ADS  Google Scholar 

  58. Gottschalch, V.; Wagner, G.; Bauer, J.; Paetzelt, H.; Shirnow, M. VLS growth of GaN nanowires on various substrates. J. Cryst. Growth 2008, 310, 5123–5128.

    Article  CAS  ADS  Google Scholar 

  59. Chen, Y. Q.; Cui, X. F.; Zhang, K.; Pan, D. Y.; Zhang, S. Y.; Wang, B.; Hou, J. G. Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem. Phys. Lett. 2003, 369, 16–20.

    Article  CAS  ADS  Google Scholar 

  60. Zhang, X.; Lew, K.; Nimmatoori, P.; Redwing, J. M.; Dickey, E. C. Diameter-dependent composition of vapor-liquid-solid grown Si1-x Gex nanowires. Nano Lett. 2007, 7, 3241–3245.

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Li, S. Y.; Lin, P.; Lee, C. Y.; Tseng, T. Y. Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. J. Appl. Phys. 2004, 95, 3711–3716.

    Article  CAS  ADS  Google Scholar 

  62. Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.

    Article  CAS  Google Scholar 

  63. Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Semiconductor nanowire heterostructures. Philos. T. R. Soc. A 2004, 362, 1247–1260.

    Article  CAS  ADS  Google Scholar 

  64. Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M. Epitaxial core-shell and coremultishell nanowire heterostructures. Nature 2002, 420, 57–61.

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Durgun, E.; Akman, N.; Ataca, C.; Ciraci, S. Atomic and electronic structures of doped silicon nanowires: A first-principles study. Phys. Rev. B 2007, 76, 245323.

    Article  ADS  Google Scholar 

  66. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123, 1613 1624.

    Google Scholar 

  67. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchii, T.; Gratzel, M. A stable quasi-solidstate dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2003, 2, 402–407.

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Rensmo, H.; Keis, K.; Lindstrom, H.; Sodergren, S.; Solbrand, A.; Hagfeldt, A.; Lindquist, S. E.; Wang, L. N.; Muhammed, M. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B 1997, 101, 2598–2601.

    Article  CAS  Google Scholar 

  69. Tennakone, K.; Kumara, G. R. R. A.; Kottegoda, I. R. M.; Perera, V. P. S. An efficient dyesensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Commun. 1999, 15–16.

  70. Keis, K.; Magnusson, E.; Lindstrom, H.; Lindquist, S. E.; Hagfeldt, A. A 5% efficient photo electrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energ. Mat. Sol. C. 2002, 73, 51–58.

    Article  Google Scholar 

  71. Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 2003, 107, 4688–4698.

    Article  CAS  Google Scholar 

  72. Hara, K.; Wang, Z. S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Suga, S. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 2005, 109, 15476–15482.

    Article  CAS  PubMed  Google Scholar 

  73. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 2004, 126, 12218–12219.

    Article  CAS  PubMed  Google Scholar 

  74. Altobello, S.; Argazzi, R.; Caramori, S.; Contado, C.; Da Fre, S.; Rubino, P.; Chone, C.; Larramona, G.; Bignozzi, C. A. Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. J. Am. Chem. Soc. 2005, 127, 15342–15343.

    Article  CAS  PubMed  Google Scholar 

  75. Robertson, N. Optimizing dyes for dye-sensitized solar cells. Angew. Chem. Int. Edit. 2006, 45, 2338–2345.

    Article  CAS  Google Scholar 

  76. Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dyesensitized solar cells. Nano Lett. 2005, 5, 1789–1792.

    Article  CAS  PubMed  ADS  Google Scholar 

  77. Green, A. N. M.; Palomares, E.; Haque, S. A.; Kroon, J. M.; Durrant, J. R. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. J. Phys. Chem. B 2005, 109, 12525–12533.

    Article  CAS  PubMed  Google Scholar 

  78. Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.; Wijayantha, K. G. U. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. J. Phys. Chem. B 2000, 104, 949 958.

    Google Scholar 

  79. Oekermann, T.; Zhang, D.; Yoshida, T.; Minoura, H. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 2004, 108, 2227–2235.

    Article  CAS  Google Scholar 

  80. Nelson, J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 1999, 59, 15374–15380.

    Article  CAS  ADS  Google Scholar 

  81. van de Lagemaat, J.; Frank, A. J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies. J. Phys. Chem. B 2001, 105, 11194–11205.

    Article  Google Scholar 

  82. Kopidakis, N.; Benkstein, K. D.; van de Lagemaat, J.; Frank, A. J. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 2003, 107, 11307–11315.

    Article  CAS  Google Scholar 

  83. Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A. Bilayer nanoporous electrodes for dye sensitized solar cells. Chem. Commun. 2000, 2231–2232.

  84. Tennakone, K.; Bandara, J.; Bandaranayake, P. K. M.; Kumara, G. R. A.; Konno, A. Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2. Jpn. J. Appl. Phys. 2001, 40, L732 L734.

    Article  Google Scholar 

  85. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 2003, 125, 475–482.

    Article  CAS  PubMed  Google Scholar 

  86. Diamant, Y.; Chappel, S.; Chen, S. G.; Melamed, O.; Zaban, A. Core-shell nanoporous electrode for dye sensitized solar cells: The effect of shell characteristics on the electronic properties of the electrode. Coord. Chem. Rev. 2004, 248, 1271–1276.

    Article  CAS  Google Scholar 

  87. Bandaranayake, K. M. P.; Indika Senevirathna, M. K. I.; Prasad Weligamuwa, P. M. G. M. P.; Tennakone, K. Dyesensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coord. Chem. Rev. 2004, 248, 1277–1281.

    Article  CAS  Google Scholar 

  88. Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. D. ZnO-Al2O3 and ZnO-TiO2 coreshell nanowire dye-sensitized solar cells. J. Phys. Chem. B 2006, 110, 22652–22663.

    Article  CAS  PubMed  Google Scholar 

  89. Mikulskas, I.; Juodkazis, S.; Tomasiunas, R.; Dumas, J. G. Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater. 2001, 13, 1574–1577.

    Article  CAS  Google Scholar 

  90. Fan, Z. Y.; Dutta, D.; Chien, C. J.; Chen, H. Y.; Brown, E. C.; Chang, P. C.; Lu, J. G. Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays. Appl. Phys. Lett. 2006, 89, 213110.

    Article  ADS  Google Scholar 

  91. Nielsch, K.; Muller, F.; Li, A. P.; Gosele, U. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 2000, 12, 582–586.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, 94720, USA

    Zhiyong Fan, Daniel J. Ruebusch, Asghar A. Rathore, Rehan Kapadia, Onur Ergen, Paul W. Leu & Ali Javey

  2. Berkeley Sensor and Actuator Center, University of California at Berkeley, Berkeley, CA, 94720, USA

    Zhiyong Fan, Daniel J. Ruebusch, Asghar A. Rathore, Rehan Kapadia, Onur Ergen, Paul W. Leu & Ali Javey

  3. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

    Zhiyong Fan, Daniel J. Ruebusch, Asghar A. Rathore, Rehan Kapadia, Onur Ergen, Paul W. Leu & Ali Javey

Authors
  1. Zhiyong Fan
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Daniel J. Ruebusch
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Asghar A. Rathore
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Rehan Kapadia
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Onur Ergen
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. Paul W. Leu
    View author publications

    You can also search for this author inPubMed Google Scholar

  7. Ali Javey
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Ali Javey.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Fan, Z., Ruebusch, D.J., Rathore, A.A. et al. Challenges and prospects of nanopillar-based solar cells. Nano Res. 2, 829–843 (2009). https://doi.org/10.1007/s12274-009-9091-y

Download citation

  • Received: 13 September 2009

  • Revised: 26 September 2009

  • Accepted: 26 September 2009

  • Published: 11 November 2009

  • Issue Date: November 2009

  • DOI: https://doi.org/10.1007/s12274-009-9091-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Nanopillar-based photovoltaics
  • solar cells
  • nanowires (NWs)

Profiles

  1. Onur Ergen View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature