Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Nano Research
  3. Article

Magnetism in carbon nanoscrolls: Quasi-half-metals and half-metals in pristine hydrocarbons

  • Research Article
  • Open access
  • Published: 11 November 2009
  • Volume 2, pages 844–850, (2009)
  • Cite this article
Download PDF

You have full access to this open access article

Nano Research Aims and scope
Magnetism in carbon nanoscrolls: Quasi-half-metals and half-metals in pristine hydrocarbons
Download PDF
  • Lin Lai1,
  • Jing Lu1,2,
  • Lu Wang1,
  • Guangfu Luo1,
  • Jing Zhou1,
  • Rui Qin1,
  • Yu Chen1,
  • Hong Li1,
  • Zhengxiang Gao1,
  • Guangping Li3,
  • Wai Ning Mei2,
  • Yutaka Maeda4,5,
  • Takeshi Akasaka6 &
  • …
  • Stefano Sanvito7 
  • 818 Accesses

  • Explore all metrics

Abstract

A magnetic ground state is revealed for the first time in zigzag-edged carbon nanoscrolls (ZCNSs) from spinunrestricted density functional theory calculations. Unlike their flat counterpart—zigzag-edged carbon nanoribbons, which are semiconductors with spin-degenerate electronic structure—ZCNSs show a variety of magnetic configurations, namely spin-selective semiconductors, metals, semimetals, quasi-half-metals, and half-metals. To the best of our knowledge, this is the first discovery of quasi-half-metals and half-metals in a pure hydrocarbon without resort to an external electric field. In addition, we calculated the spin-dependent transportation of the semiconducting ZCNSs with 12 and 20 zigzag chains, and found that they are 13% and 17% at the Fermi level, respectively, suggesting that ZCNS can be an effective spin filter.

Article PDF

Download to read the full article text

Similar content being viewed by others

Topological frustration induces unconventional magnetism in a nanographene

Article 09 December 2019

First-Principles Calculations of Magnetism in Nanoscale Carbon Materials Confining Metal with f Valence Electrons

Article 28 November 2015

QHOD-Net: A New Highly Metallic Two-Dimensional Carbon Allotrope Material

Article 20 October 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

    Article  PubMed  ADS  Google Scholar 

  5. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229 1232.

    PubMed  Google Scholar 

  6. Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748–2754.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Han, M. Y.; Ozyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  PubMed  ADS  Google Scholar 

  8. Hod, O.; Barone, V.; Peralta, J. E.; Scuseria, G. E. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 2007, 7, 2295–2299.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Kan, E. J.; Li, Z. Y.; Yang, J. L.; Hou, J. G. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4224–4225.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.

    Article  PubMed  ADS  Google Scholar 

  11. Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Viculis, L. M.; Mack, J. J.; Kaner, R. B. A chemical route to carbon nanoscrolls. Science 2003, 299, 1361.

    Article  CAS  PubMed  Google Scholar 

  13. Roy, D.; Angeles-Tactay, E.; Brown, R. J. C.; Spencer, S. J.; Fry, T.; Dunton, T. A.; Young, T.; Milton, M. J. T, Synthesis and raman spectroscopic characterisation of carbon nanoscrolls. Chem. Phys. Lett. 2008, 465, 254–257.

    Article  CAS  ADS  Google Scholar 

  14. Savoskin, M. V.; Mochalin, V. N.; Yaroshenko, A. P.; Lazareva, N. I.; Konstantinova, T. E.; Barsukov, I. V.; Prokofiev, I. G. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon 2007, 45, 2797–2800.

    Article  CAS  Google Scholar 

  15. Xie, X.; Ju, L.; Feng, X. F.; Sun, Y. H.; Zhou, R. F.; Liu, K.; Fan, S. S.; Li, Q. Q.; Jiang, K. L. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 2009, 9, 2565–2570.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Chen, Y.; Lu, J.; Gao, Z. X. Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J. Phys. Chem. C 2007, 111, 1625–1630.

    Article  CAS  Google Scholar 

  17. Braga, S. F.; Coluci, V. R.; Baughman, R. H.; Galvao, D. S. Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study. Chem. Phys. Lett. 2007, 441, 78–82.

    Article  CAS  ADS  Google Scholar 

  18. Braga, S. F.; Coluci, V. R.; Legoas, S. B.; Giro, R.; Galva, D. S.; Baughman, R. H. Structure and dynamics of carbon nanoscrolls. Nano Lett. 2004, 4, 881–884.

    Article  CAS  ADS  Google Scholar 

  19. Coluci, V. R.; Braga, S. F.; Baughman, R. H.; Galvao, D. S. Prediction of the hydrogen storage capacity of carbon nanoscrolls. Phys. Rev. B 2007, 75, 125–404.

    Google Scholar 

  20. Mpourmpakis, G.; Tylianakis, E.; Froudakis, G. E. Carbon nanoscrolls: A promising material for hydrogen storage. Nano Lett. 2007, 7, 1893–1897.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Pan, H.; Feng, Y. P.; Lin, J. Y. Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Phys. Rev. B 2005, 72, 085415.

    Article  ADS  Google Scholar 

  22. Ordejon, P.; Artacho, E.; Soler, J. M. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 1996, 53, R10441–R10444.

    Article  CAS  ADS  Google Scholar 

  23. Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Mat. 2002, 14, 2745–2779.

    Article  CAS  ADS  Google Scholar 

  24. Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

    Article  CAS  ADS  Google Scholar 

  25. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  MathSciNet  ADS  Google Scholar 

  26. Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S.; Lambert, C.; Ferrer, J.; Sanvito, S. Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 2006, 73, 085414.

    Article  ADS  Google Scholar 

  27. Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S. W.; Lambert, C. J.; Ferrer, J.; Sanvito, S. Towards molecular spintronics. Nat. Mater. 2005, 4, 335–339.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Martins, T. B.; da Silva, A. J. R.; Miwa, R. H.; Fazzio, A. σ- and π-defects at graphene nanoribbon edges: Building spin filters. Nano Lett. 2008, 8, 2293–2298.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Gunlycke, D.; Areshkin, D. A.; Li, J. W.; Mintmire, J. W.; White, C. T. Graphene nanostrip digital memory device. Nano Lett. 2007, 7, 3608–3611.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Enoki, T.; Kobayashi, Y. Magnetic nanographite: An approach to molecular magnetism. J. Mater. Chem. 2005, 15, 3999–4002.

    Article  CAS  Google Scholar 

  31. Enoki, T.; Takai, K. Unconventional electronic and magnetic functions of nanographene-based host-guest systems. Dalton Trans. 2008, 3773–3781.

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, 100871, China

    Lin Lai, Jing Lu, Lu Wang, Guangfu Luo, Jing Zhou, Rui Qin, Yu Chen, Hong Li & Zhengxiang Gao

  2. University of Nebraska at Omaha, Omaha, Nebraska, 68182-0266, USA

    Jing Lu & Wai Ning Mei

  3. SICAS Center, Lee Hall, SUNY Oneonta, Oneonta, NY, 13820, USA

    Guangping Li

  4. Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan

    Yutaka Maeda

  5. PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawagushi, Saitama, Japan

    Yutaka Maeda

  6. Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, 305-8577, Japan

    Takeshi Akasaka

  7. School of Physics and CRANN, Trinity College, Dublin 2, Ireland

    Stefano Sanvito

Authors
  1. Lin Lai
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Jing Lu
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Lu Wang
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Guangfu Luo
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Jing Zhou
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. Rui Qin
    View author publications

    You can also search for this author inPubMed Google Scholar

  7. Yu Chen
    View author publications

    You can also search for this author inPubMed Google Scholar

  8. Hong Li
    View author publications

    You can also search for this author inPubMed Google Scholar

  9. Zhengxiang Gao
    View author publications

    You can also search for this author inPubMed Google Scholar

  10. Guangping Li
    View author publications

    You can also search for this author inPubMed Google Scholar

  11. Wai Ning Mei
    View author publications

    You can also search for this author inPubMed Google Scholar

  12. Yutaka Maeda
    View author publications

    You can also search for this author inPubMed Google Scholar

  13. Takeshi Akasaka
    View author publications

    You can also search for this author inPubMed Google Scholar

  14. Stefano Sanvito
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence to Jing Lu or Zhengxiang Gao.

Electronic supplementary material

Supplementary material, approximately 340 KB.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Lai, L., Lu, J., Wang, L. et al. Magnetism in carbon nanoscrolls: Quasi-half-metals and half-metals in pristine hydrocarbons. Nano Res. 2, 844–850 (2009). https://doi.org/10.1007/s12274-009-9081-0

Download citation

  • Received: 15 July 2009

  • Revised: 18 August 2009

  • Accepted: 19 August 2009

  • Published: 11 November 2009

  • Issue Date: November 2009

  • DOI: https://doi.org/10.1007/s12274-009-9081-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Carbon nanoscrolls
  • quasi-half-metals
  • half-metals
  • graphene
  • spin-selective
  • spin filter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature