Abstract
GPR35, an orphan receptor, has been waiting for its ligand since its cloning in 1998. Many endogenous and exogenous molecules have been suggested to act as agonists of GPR35 including kynurenic acid, zaprinast, lysophosphatidic acid, and CXCL17. However, complex and controversial responses to ligands among species have become a huge hurdle in the development of therapeutics in addition to the orphan state. Recently, a serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), is reported to be a high potency ligand for GPR35 by investigating the increased expression of GPR35 in neutrophils. In addition, a transgenic knock-in mouse line is developed, in which GPR35 was replaced with a human ortholog, making it possible not only to overcome the different selectivity of agonists among species but also to conduct therapeutic experiments on human GPR35 in mouse models. In the present article, I review the recent advances and prospective therapeutic directions in GPR35 research. Especially, I’d like to draw attention of readers to the finding of 5-HIAA as a ligand of GPR35 and lead to apply the 5-HIAA and human GPR35 knock-in mice to their research fields in a variety of pathophysiological conditions.



Similar content being viewed by others
References
Agudelo LZ, Ferreira DMS, Cervenka I, Bryzgalova G, Dadvar S, Jannig PR, Pettersson-Klein AT, Lakshmikanth T, Sustarsic EG, Porsmyr-Palmertz M, Correia JC, Izadi M, Martínez-Redondo V, Ueland PM, Midttun Ø, Gerhart-Hines Z, Brodin P, Pereira T, Berggren PO, Ruas JL (2018) Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab 27(2):378–392e5. https://doi.org/10.1016/j.cmet.2018.01.004
Alahdal M, Sun D, Duan L, Ouyang H, Wang M, Xiong J, Wang D (2021) Forecasting sensitive targets of the kynurenine pathway in pancreatic adenocarcinoma using mathematical modeling. Cancer Sci 112(4):1481–1494. https://doi.org/10.1111/cas.14832
Ali H, AbdelMageed M, Olsson L, Israelsson A, Lindmark G, Hammarström ML, Hammarström S, Sitohy B (2019) Utility of G protein-coupled receptor 35 expression for predicting outcome in colon cancer. Tumour Biol 41(6):1010428319858885. https://doi.org/10.1177/1010428319658885
Alkondon M, Pereira EF, Todd SW, Randall WR, Lane MV, Albuquerque EX (2015) Functional G-protein-coupled receptor 35 is expressed by neurons in the CA1 field of the hippocampus. Biochem Pharmacol 93(4):506–518. https://doi.org/10.1016/j.bcp.2014.12.009
Barth MC, Ahluwalia N, Anderson TJ, Hardy GJ, Sinha S, Alvarez-Cardona JA, Pruitt IE, Rhee EP, Colvin RA, Gerszten RE (2009) Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions. J Biol Chem 284(29):19189–19195. https://doi.org/10.1074/jbc.M109.024042
Baumgartner R, Casagrande FB, Mikkelsen RB, Berg M, Polyzos KA, Forteza MJ, Arora A, Schwartz TW, Hjorth SA, Ketelhuth DFJ (2021) Disruption of GPR35 signaling in bone marrow-derived cells does not influence vascular inflammation and atherosclerosis in hyperlipidemic mice. Metabolites. https://doi.org/10.3390/metabo11070411
Berlinguer-Palmini R, Masi A, Narducci R, Cavone L, Maratea D, Cozzi A, Sili M, Moroni F, Mannaioni G (2013) GPR35 activation reduces Ca2 + transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS ONE 8(11):e82180. https://doi.org/10.1371/journal.pone.0082180
Binti Mohd Amir NAS, Mackenzie AE, Jenkins L, Boustani K, Hillier MC, Tsuchiya T, Milligan G, Pease JE (2018) Evidence for the existence of a CXCL17 receptor distinct from GPR35. J Immunol 201(2):714–724. https://doi.org/10.4049/jimmunol.1700884
Boleij A, Fathi P, Dalton W, Park B, Wu X, Huso D, Allen J, Besharati S, Anders RA, Housseau F, Mackenzie AE, Jenkins L, Milligan G, Wu S, Sears CL (2021) G-protein coupled receptor 35 (GPR35) regulates the colonic epithelial cell response to enterotoxigenic Bacteroides fragilis. Commun Biol 4(1):585. https://doi.org/10.1038/s42003-021-02014-3
Chen K, He L, Li Y, Li X, Qiu C, Pei H, Yang D (2020) Inhibition of GPR35 preserves mitochondrial function after myocardial infarction by targeting calpain 1/2. J Cardiovasc Pharmacol 75(6):556–563. https://doi.org/10.1097/FJC.0000000000000819
Chen Z, Jiao Y, Zhang Y, Wang Q, Wu W, Zheng J, Li J (2022) G-Protein coupled receptor 35 induces intervertebral disc degeneration by mediating the influx of calcium ions and upregulating reactive oxygen species. Oxid Med Cell Longev 2022:5469220. https://doi.org/10.1155/2022/5469220
Cosi C, Mannaioni G, Cozzi A, Carlà V, Sili M, Cavone L, Maratea D, Moroni F (2011) G-protein coupled receptor 35 (GPR35) activation and inflammatory pain: studies on the antinociceptive effects of kynurenic acid and zaprinast. Neuropharmacology 60(7–8):1227–1231. https://doi.org/10.1016/j.neuropharm.2010.11.014
De Giovanni M, Tam H, Valet C, Xu Y, Looney MR, Cyster JG (2022) GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell 185(5):815–830e19. https://doi.org/10.1016/j.cell.2022.01.010
De Giovanni M, Chen H, Li X, Cyster JG (2023) GPR35 and mediators from platelets and mast cells in neutrophil migration and inflammation. Immunol Rev 00:1–16. https://doi.org/10.1111/imr.13194
Deng H, Fang Y (2012) Aspirin metabolites are GPR35 agonists. Naunyn Schmiedebergs Arch Pharmacol 385(7):729–737. https://doi.org/10.1007/s00210-012-0752-0
Deng H, Hu H, Fang Y (2012) Multiple tyrosine metabolites are GPR35 agonists. Sci Rep 2:373. https://doi.org/10.1038/srep00373
Divorty N, Mackenzie AE, Nicklin SA, Milligan G (2015) G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease. Front Pharmacol 6:41. https://doi.org/10.3389/fphar.2015.00041
Divorty N, Milligan G, Graham D, Nicklin SA (2018) The orphan receptor GPR35 contributes to angiotensin II-induced hypertension and cardiac dysfunction in mice. Am J Hypertens 31(9):1049–1058. https://doi.org/10.1093/ajh/hpy073
Divoux A, Moutel S, Poitou C, Lacasa D, Veyrie N, Aissat A, Arock M, Guerre-Millo M, Clément K (2012) Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J Clin Endocrinol Metab 97(9):E1677–E1685. https://doi.org/10.1210/jc.2012-1532
Duan J, Liu Q, Yuan Q, Ji Y, Zhu S, Tan Y, He X, Xu Y, Shi J, Cheng X, Jiang H, Eric Xu H, Jiang Y (2022) Insights into divalent cation regulation and G(13)-coupling of orphan receptor GPR35. Cell Discov 8(1):135. https://doi.org/10.1038/s41421-022-00499-8
Egerod KL, Petersen N, Timshel PN, Rekling JC, Wang Y, Liu Q, Schwartz TW, Gautron L (2018) Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metabolism 12:62–75. https://doi.org/10.1016/j.molmet.2018.03.016
Ellinghaus D, Folseraas T, Holm K, Ellinghaus E, Melum E, Balschun T, Laerdahl JK, Shiryaev A, Gotthardt DN, Weismüller TJ (2013) Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology 58(3):1074–1083. https://doi.org/10.1002/hep.25977
Fallarini S, Magliulo L, Paoletti T, de Lalla C, Lombardi G (2010) Expression of functional GPR35 in human iNKT cells. Biochem Biophys Res Commun 398(3):420–425. https://doi.org/10.1016/j.bbrc.2010.06.091
Farooq SM, Hou Y, Li H, O’Meara M, Wang Y, Li C, Wang JM (2018) Disruption of GPR35 exacerbates dextran sulfate sodium-induced colitis in mice. Dig Dis Sci 63(11):2910–2922. https://doi.org/10.1007/s10620-018-5216-z
Foata F, Sprenger N, Rochat F, Damak S (2020) Activation of the G-protein coupled receptor GPR35 by human milk oligosaccharides through different pathways. Sci Rep 10(1):16117. https://doi.org/10.1038/s41598-020-73008-0
Forrest CM, Gould SR, Darlington LG, Stone TW (2003) Levels of purine, kynurenine and lipid peroxidation products in patients with inflammatory bowel disease. Adv Exp Med Biol 527:395–400. https://doi.org/10.1007/978-1-4615-0135-0_46
Forrest CM, Mackay GM, Oxford L, Stoy N, Stone TW, Darlington LG (2006) Kynurenine pathway metabolism in patients with osteoporosis after 2 years of drug treatment. Clin Exp Pharmacol Physiol 33(11):1078–1087. https://doi.org/10.1111/j.1440-1681.2006.04490.x
Guo J, Williams DJ, Puhl HL, Ikeda SR (2008) Inhibition of N-Type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons. J Pharmacol Exp Ther 324(1):342. https://doi.org/10.1124/jpet.107.127266
Guo YJ, Zhou YJ, Yang XL, Shao ZM, Ou ZL (2017) The role and clinical significance of the CXCL17-CXCR8 (GPR35) axis in breast cancer. Biochem Biophys Res Commun 493(3):1159–1167. https://doi.org/10.1016/j.bbrc.2017.09.113
Hellman B, Larsson S, Westman S (1963) Mast cell content and fatty acid metabolism in the epididymal fat pad of obese mice. Acta Physiol Scand 58:255–262. https://doi.org/10.1111/j.1748-1716.1963.tb02647.x
Imielinski M, Baldassano RN, Griffiths A, Russell RK, Annese V, Dubinsky M, Kugathasan S, Bradfield JP, Walters TD, Sleiman P, Kim CE, Muise A, Wang K, Glessner JT, Saeed S, Zhang H, Frackelton EC, Hou C, Flory JH, Otieno G, Chiavacci RM, Grundmeier R, Castro M, Latiano A, Dallapiccola B, Stempak J, Abrams DJ, Taylor K, McGovern D, Silber G, Wrobel I, Quiros A, Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmuda MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwillam R, Tremelling M, Delukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ, Heyman MB, Ferry GD, Kirschner B, Lee J, Essers J, Grand R, Stephens M, Levine A, Piccoli D, Van Limbergen J, Cucchiara S, Monos DS, Guthery SL, Denson L, Wilson DC, Grant SF, Daly M, Silverberg MS, Satsangi J, Hakonarson H (2009) Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet 41(12):1335–1340. https://doi.org/10.1038/ng.489
Jenkins L, Brea J, Smith NJ, Hudson BD, Reilly G, Bryant NJ, Castro M, Loza MI, Milligan G (2010) Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of β-arrestin-2 and activate Gα13. Biochem J 432(3):451–459. https://doi.org/10.1042/BJ20101287
Jenkins L, Alvarez-Curto E, Campbell K, de Munnik S, Canals M, Schlyer S, Milligan G (2011) Agonist activation of the G protein-coupled receptor GPR35 involves transmembrane domain III and is transduced via Gαâ13 and β-arrestin-2. Br J Pharmacol 162(3):733–748. https://doi.org/10.1111/j.1476-5381.2010.01082.x
Jenkins L, Harries N, Lappin JE, MacKenzie AE, Neetoo-Isseljee Z, Southern C, McIver EG, Nicklin SA, Taylor DL, Milligan G (2012) Antagonists of GPR35 display high species ortholog selectivity and varying modes of action. J Pharmacol Exp Ther 343(3):683–695. https://doi.org/10.1124/jpet.112.198945
Jung TW, Park J, Sun JL, Ahn SH, Abd El-Aty AM, Hacimuftuoglu A, Kim HC, Shim JH, Shin S, Jeong JH (2020) Administration of kynurenic acid reduces hyperlipidemia-induced inflammation and insulin resistance in skeletal muscle and adipocytes. Mol Cell Endocrinol 518:110928. https://doi.org/10.1016/j.mce.2020.110928
Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9(11):1215–1223. https://doi.org/10.1038/ni.f.216
Kaya B, Doñas C, Wuggenig P, Diaz OE, Morales RA, Melhem H, Hernández PP, Kaymak T, Das S, Hruz P, Franc Y, Geier F, Ayata CK, Villablanca EJ, Niess JH (2020) Lysophosphatidic acid-mediated GPR35 Signaling in CX3CR1+ Macrophages regulates intestinal homeostasis. Cell Rep 32(5):107979. https://doi.org/10.1016/j.celrep.2020.107979
Kema IP, de Vries EG, Muskiet FA (2000) Clinical chemistry of serotonin and metabolites. J Chromatogr B Biomed Sci Appl 747(1–2):33–48. https://doi.org/10.1016/s0378-4347(00)00341-8
Kim MJ, Park SJ, Nam SY, Im DS (2019) Lodoxamide attenuates hepatic fibrosis in mice: involvement of GPR35. Biomol Ther (Seoul) 28(1):92–97. https://doi.org/10.4062/biomolther.2018.227
Lambert GW, Kaye DM, Cox HS, Vaz M, Turner AG, Jennings GL, Esler MD (1995) Regional 5-hydroxyindoleacetic acid production in humans. Life Sci 57(3):255–267. https://doi.org/10.1016/0024-3205(95)00269-C
Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, Saijo K, Glass CK, Hume DA, Kellie S, Sweet MJ (2008) Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res 4:5. https://doi.org/10.1186/1745-7580-4-5
Lee JY, Hwang HW, Jin HS, Lee JE, Kang NJ, Lee DW (2022) A genomics-based semirational approach for expanding the postbiotic potential of collagen peptides using Lactobacillaceae. J Agric Food Chem 70(27):8365–8376. https://doi.org/10.1021/acs.jafc.2c01251
Li H, Nguyen H, Meda Venkata SP, Koh JY, Kowluru A, Li L, Rossi NF, Chen W, Wang JM (2021) Novel role of GPR35 (G-Protein-coupled receptor 35) in the regulation of endothelial cell function and blood pressure. Hypertension 78(3):816–830. https://doi.org/10.1161/hepertensionaha.120.15423
Lin LC, Quon T, Engberg S, Mackenzie AE, Tobin AB, Milligan G (2021) G protein-coupled receptor GPR35 suppresses lipid accumulation in hepatocytes. ACS Pharmacol Transl Sci 4(6):1835–1848. https://doi.org/10.1021/acsptsci.1c00224
MacKenzie AE, Caltabiano G, Kent TC, Jenkins L, McCallum JE, Hudson BD, Nicklin SA, Fawcett L, Markwick R, Charlton SJ, Milligan G (2014) The antiallergic mast cell stabilizers lodoxamide and bufrolin as the first high and equipotent agonists of human and rat GPR35. Mol Pharmacol 85(1):91–104. https://doi.org/10.1124/mol.113.089482
Mackenzie AE, Quon T, Lin LC, Hauser AS, Jenkins L, Inoue A, Tobin AB, Gloriam DE, Hudson BD, Milligan G (2019) Receptor selectivity between the G proteins Gα(12) and Gα(13) is defined by a single leucine-to-isoleucine variation. Faseb j 33(4):5005–5017. https://doi.org/10.1096/fj.201801956R
Mackiewicz T, Jacenik D, Talar M, Fichna J (2022) The GPR35 expression pattern is associated with overall survival in male patients with colorectal cancer. Pharmacol Rep 74(4):709–717. https://doi.org/10.1007/s43440-022-00371-2
Maravillas-Montero JL, Burkhardt AM, Hevezi PA, Carnevale CD, Smit MJ, Zlotnik A (2015) Cutting edge: GPR35/CXCR8 is the receptor of the mucosal chemokine CXCL17. J Immunol 194(1):29–33. https://doi.org/10.4049/jimmunol.1401704
Marti-Solano M, Crilly SE, Malinverni D, Munk C, Harris M, Pearce A, Quon T, Mackenzie AE, Wang X, Peng J, Tobin AB, Ladds G, Milligan G, Gloriam DE, Puthenveedu MA, Babu MM (2020) Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 587(7835):650–656. https://doi.org/10.1038/s41586-020-2888-2
Matysik-Woźniak A, Wnorowski A, Turski WA, Jóźwiak K, Jünemann A, Rejdak R (2019) The presence and distribution of G protein-coupled receptor 35 (GPR35) in the human cornea—evidences from in silico gene expression analysis and immunodetection. Exp Eye Res 179:188–192. https://doi.org/10.1016/j.exer.2018.11.011
McCallum JE, Mackenzie AE, Divorty N, Clarke C, Delles C, Milligan G, Nicklin SA (2015) G-Protein-coupled receptor 35 mediates human saphenous vein vascular smooth muscle cell Migration and endothelial cell proliferation. J Vasc Res 52(6):383–395. https://doi.org/10.1159/000444754
Melhem H, Kaya B, Kaymak T, Wuggenig P, Flint E, Roux J, Oost KC, Cavelti-Weder C, Balmer ML, Walser JC, Morales RA, Riedel CU, Liberali P, Villablanca EJ, Niess JH (2022) Epithelial GPR35 protects from Citrobacter rodentium infection by preserving goblet cells and mucosal barrier integrity. Mucosal Immunol 15(3):443–458. https://doi.org/10.1038/s41385-022-00494-y
Michaudel C, Danne C, Agus A, Magniez A, Aucouturier A, Spatz M, Lefevre A, Kirchgesner J, Rolhion N, Wang Y, Lavelle A, Galbert C, Da Costa G, Poirier M, Lapière A, Planchais J, Nádvorník P, Illes P, Oeuvray C, Creusot L, Michel ML, Benech N, Bourrier A, Nion-Larmurier I, Landman C, Richard ML, Emond P, Seksik P, Beaugerie L, Arguello RR, Moulin D, Mani S, Dvorák Z, Bermúdez-Humarán LG, Langella P, Sokol H (2022) Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut. https://doi.org/10.1136/gutjnl-2022-327337
Milligan G (2011) Orthologue selectivity and ligand bias: translating the pharmacology of GPR35. Trends Pharmacol Sci 32(5):317–325. https://doi.org/10.1016/j.tips.2011.02.002
Milligan G (2023) GPR35: from enigma to therapeutic target. Trends Pharmacol Sci. https://doi.org/10.1016/j.tips.2023.03.001
Min KD, Asakura M, Liao Y, Nakamaru K, Okazaki H, Takahashi T, Fujimoto K, Ito S, Takahashi A, Asanuma H, Yamazaki S, Minamino T, Sanada S, Seguchi O, Nakano A, Ando Y, Otsuka T, Furukawa H, Isomura T, Takashima S, Mochizuki N, Kitakaze M (2010) Identification of genes related to heart failure using global gene expression profiling of human failing myocardium. Biochem Biophys Res Commun 393(1):55–60. https://doi.org/10.1016/j.bbrc.2010.01.076
Nam SY, Park SJ, Im DS (2019) Protective effect of lodoxamide on hepatic steatosis through GPR35. Cell Signal 53:190–200. https://doi.org/10.1016/j.cellsig.2018.10.001
Nesci S (2022) GPR35, ally of the anti-ischemic ATPIF1-ATP synthase interaction. Trends Pharmacol Sci 43(11):891–893. https://doi.org/10.1016/j.tips.2022.09.003
O’Dowd BF, Nguyen T, Marchese A, Cheng R, Lynch KR, Heng HHQ, Kolakowski LF, George SR (1998) Discovery of three novel G-Protein-coupled receptor genes. Genomics 47(2):310–313. https://doi.org/10.1006/geno.1998.5095
Ohshiro H, Tonai-Kachi H, Ichikawa K (2008) GPR35 is a functional receptor in rat dorsal root ganglion neurons. Biochem Biophys Res Commun 365(2):344–348. https://doi.org/10.1016/j.bbrc.2007.10.197
Oka S, Ota R, Shima M, Yamashita A, Sugiura T (2010) GPR35 is a novel lysophosphatidic acid receptor. Biochem Biophys Res Commun 395(2):232–237. https://doi.org/10.1016/j.bbrc.2010.03.169
Okumura S, Baba H, Kumada T, Nanmoku K, Nakajima H, Nakane Y, Hioki K, Ikenaka K (2004) Cloning of a G-protein-coupled receptor that shows an activity to transform NIH3T3 cells and is expressed in gastric cancer cells. Cancer Sci 95(2):131–135. https://doi.org/10.1111/j.1349-7006.2004.tb03193.x
Pagano E, Elias JE, Schneditz G, Saveljeva S, Holland LM, Borrelli F, Karlsen TH, Kaser A, Kaneider NC (2022) Activation of the GPR35 pathway drives angiogenesis in the tumour microenvironment. Gut 71(3):509–520. https://doi.org/10.1136/gutjnl-2020-323363
Park SJ, Lee SJ, Nam SY, Im DS (2018) GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17-induced migration stimulatory response in THP-1 cells; is GPR35 a receptor for CXCL17? Br J Pharmacol 175(1):154–161. https://doi.org/10.1111/bph.14082
Quon T, Lin LC, Ganguly A, Tobin AB, Milligan G (2020) Therapeutic opportunities and challenges in targeting the orphan G protein-coupled receptor GPR35. ACS Pharmacol Transl Sci 3(5):801–812. https://doi.org/10.1021/acsptsci.0c00079
Ronkainen VP, Tuomainen T, Huusko J, Laidinen S, Malinen M, Palvimo JJ, Ylä-Herttuala S, Vuolteenaho O, Tavi P (2014) Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling. Cardiovasc Res 101(1):69–77. https://doi.org/10.1093/cvr/cvt226
Ruiz-Pinto S, Pita G, Patiño-García A, Alonso J, Pérez-Martínez A, Cartón AJ, Gutiérrez-Larraya F, Alonso MR, Barnes DR, Dennis J, Michailidou K, Gómez-Santos C, Thompson DJ, Easton DF, Benítez J, González-Neira A (2017) Exome array analysis identifies GPR35 as a novel susceptibility gene for anthracycline-induced cardiotoxicity in childhood cancer. Pharmacogenet Genomics 27(12):445–453. https://doi.org/10.1097/FPC.0000000000000309
Schihada H, Klompstra TM, Humphrys LJ, Cervenka I, Dadvar S, Kolb P, Ruas JL, Schulte G (2022) Isoforms of GPR35 have distinct extracellular N-termini that allosterically modify receptor-transducer coupling and mediate intracellular pathway bias. J Biol Chem. https://doi.org/10.1016/j.jbc.2022.102328
Schlittler M, Goiny M, Agudelo LZ, Venckunas T, Brazaitis M, Skurvydas A, Kamandulis S, Ruas JL, Erhardt S, Westerblad H, Andersson DC (2016) Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. Am J Physiol Cell Physiol 310(10):C836–C840. https://doi.org/10.1152/ajpcell.00053.2016
Schneditz G, Elias JE, Pagano E, Zaeem Cader M, Saveljeva S, Long K, Mukhopadhyay S, Arasteh M, Lawley TD, Dougan G, Bassett A, Karlsen TH, Kaser A, Kaneider NC (2019) GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Sci Signal 12(562):eaau9048. https://doi.org/10.1126/scisignal.aau9048
Sharmin O, Abir AH, Potol A, Alam M, Banik J, Rahman A, Tarannum N, Wadud R, Habib ZF, Rahman M (2020) Activation of GPR35 protects against cerebral ischemia by recruiting monocyte-derived macrophages. Sci Rep 10(1):9400. https://doi.org/10.1038/s41598-020-66417-8
Shi T, Shi Y, Gao H, Ma Y, Wang Q, Shen S, Shao X, Gong W, Chen X, Qin J, Wu J, Jiang Q, Xue B (2022) Exercised accelerated the production of muscle-derived kynurenic acid in skeletal muscle and alleviated the postmenopausal osteoporosis through the Gpr35/NFκB p65 pathway. J Orthop Translat 35:1–12. https://doi.org/10.1016/j.jot.2022.03.003
Shrimpton AE, Braddock BR, Thomson LL, Stein CK, Hoo JJ (2004) Molecular delineation of deletions on 2q37.3 in three cases with an Albright hereditary osteodystrophy-like phenotype. Clin Genet 66(6):537–544. https://doi.org/10.1111/j.1399-0004.2004.00363.x
Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A, Bassoni DL, Raab WJ, Quinn E, Wehrman TS, Davenport AP, Brown AJ, Green A, Wigglesworth MJ, Rees S (2013) Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. J Biomol Screen 18(5):599–609. https://doi.org/10.1177/1087057113475480
Sparfel L, Pinel-Marie ML, Boize M, Koscielny S, Desmots S, Pery A, Fardel O (2010) Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci 114(2):247–259. https://doi.org/10.1093/toxsci/kfq007
Sun YV, Bielak LF, Peyser PA, Turner ST, Sheedy PF 2nd, Boerwinkle E, Kardia SL (2008) Application of machine learning algorithms to predict coronary artery calcification with a sibship-based design. Genet Epidemiol 32(4):350–360. https://doi.org/10.1002/gepi.20309
Szeitz A, Bandiera SM (2018) Analysis and measurement of serotonin. Biomed Chromatogr. https://doi.org/10.1002/bmc.4135
Taniguchi Y, Tonai-Kachi H, Shinjo K (2006) Zaprinast, a well-known cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35. FEBS Lett 580(21):5003–5008. https://doi.org/10.1016/j.febslet.2006.08.015
Taniguchi Y, Tonai-Kachi H, Shinjo K (2008) 5-Nitro-2-(3-phenylpropylamino)benzoic acid is a GPR35 agonist. Pharmacology 82(4):245–249. https://doi.org/10.1159/000157625
Thimm D, Funke M, Meyer A, Müller CE (2013) 6-Bromo-8-(4-[(3)H]methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid: a powerful tool for studying orphan G protein-coupled receptor GPR35. J Med Chem 56(17):7084–7099. https://doi.org/10.1021/jm4009373
Tian Y, Hu Q, Zhang R, Zhou B, Xie D, Wang Y, Zhang X, Yang L (2021) Rational design of innate defense regulator peptides as tumor vaccine adjuvants. NPJ Vaccines 6(1):75. https://doi.org/10.1038/s41541-021-00334-3
Tsukahara T, Hamouda N, Utsumi D, Matsumoto K, Amagase K, Kato S (2017) G protein-coupled receptor 35 contributes to mucosal repair in mice via migration of colonic epithelial cells. Pharmacol Res 123:27–39. https://doi.org/10.1016/j.phrs.2017.06.009
Walczak K, Turski WA, Rajtar G (2014) Kynurenic acid inhibits colon cancer proliferation in vitro: effects on signaling pathways. Amino Acids 46(10):2393–2401. https://doi.org/10.1007/s00726-014-1790-3
Walczak K, Wnorowski A, Turski WA, Plech T (2020) Kynurenic acid and cancer: facts and controversies. Cell Mol Life Sci 77(8):1531–1550. https://doi.org/10.1007/s00018-019-03332-w
Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281(31):22021–22028. https://doi.org/10.1074/jbc.M603503200
Wang W, Han T, Tong W, Zhao J, Qiu X (2018) Overexpression of GPR35 confers drug resistance in NSCLC cells by β-arrestin/Akt signaling. Onco Targets Ther 11:6249–6257. https://doi.org/10.2147/OTT.S175606
Wang J, Chen L, Qu L, Li K, Zhao Y, Wang Z, Li Y, Zhang X, Jin Y, Liang X (2019) Isolation and bioactive evaluation of flavonoid glycosides from Lobelia chinensis Lour using two-dimensional liquid chromatography combined with label-free cell phenotypic assays. J Chromatogr A 1601:224–231. https://doi.org/10.1016/j.chroma.2019.04.073
Wang D, Li D, Zhang Y, Chen J, Zhang Y, Liao C, Qin S, Tian Y, Zhang Z, Xu F (2021) Functional metabolomics reveal the role of AHR/GPR35 mediated kynurenic acid gradient sensing in chemotherapy-induced intestinal damage. Acta Pharm Sin B 11(3):763–780. https://doi.org/10.1016/j.apsb.2020.07.017
Wei L, Hou T, Li J, Zhang X, Zhou H, Wang Z, Cheng J, Xiang K, Wang J, Zhao Y, Liang X (2021) Structure-activity relationship studies of coumarin-like diacid derivatives as human G protein-coupled receptor-35 (hGPR35) agonists and a consequent new design principle. J Med Chem 64(5):2634–2647. https://doi.org/10.1021/acs.jmedchem.0c01624
Wei X, Yin F, Wu M, Xie Q, Zhao X, Zhu C, Xie R, Chen C, Liu M, Wang X, Ren R, Kang G, Zhu C, Cong J, Wang H, Wang X (2023) G protein-coupled receptor 35 attenuates nonalcoholic steatohepatitis by reprogramming cholesterol homeostasis in hepatocytes. Acta Pharm Sin B 13(3):1128–1144. https://doi.org/10.1016/j.apsb.2022.10.011
Willis EF, Clough GF, Church MK (2004) Investigation into the mechanisms by which nedocromil sodium, frusemide and bumetanide inhibit the histamine-induced itch and flare response in human skin in vivo. Clin Exp Allergy 34(3):450–455. https://doi.org/10.1111/j.1365-2222.2004.01898.x
Wirthgen E, Hoeflich A, Rebl A, Günther J (2017) Kynurenic acid: the janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front Immunol 8:1957. https://doi.org/10.3389/fimmu.2017.01957
Wu X, Chen S, Yan Q, Yu F, Shao H, Zheng X, Zhang X (2023) Gpr35 shapes gut microbial ecology to modulate hepatic steatosis. Pharmacol Res 189:106690. https://doi.org/10.1016/j.phrs.2023.106690
Wyant GA, Yu W, Doulamis IP, Nomoto RS, Saeed MY, Duignan T, McCully JD, Kaelin WG Jr (2022) Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists. Science 377(6606):621–629. https://doi.org/10.1126/science.abm1638
Yabut JM, Desjardins EM, Chan EJ, Day EA, Leroux JM, Wang B, Crane ED, Wong W, Morrison KM, Crane JD, Khan WI, Steinberg GR (2020) Genetic deletion of mast cell serotonin synthesis prevents the development of obesity and insulin resistance. Nat Commun 11(1):463. https://doi.org/10.1038/s41467-019-14080-7
Yang Y, Lu JY, Wu X, Summer S, Whoriskey J, Saris C, Reagan JD (2010) G-protein-coupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology 86(1):1–5. https://doi.org/10.1159/000314164
Yang Y, Fu A, Wu X, Reagan JD (2012) GPR35 is a target of the loop diuretic drugs bumetanide and furosemide. Pharmacology 89(1–2):13–17. https://doi.org/10.1159/000335127
Yang SK, Hong M, Choi H, Zhao W, Jung Y, Haritunians T, Ye BD, Kim KJ, Park SH, Lee I, Kim WH, Cheon JH, Kim YH, Jang BI, Kim HS, Choi JH, Koo JS, Lee JH, Jung SA, Shin HD, Kang D, Youn HS, Taylor KD, Rotter JI, Liu J, McGovern DP, Song K (2015) Immunochip analysis identification of 6 additional susceptibility loci for Crohn’s disease in Koreans. Inflamm Bowel Dis 21(1):1–7. https://doi.org/10.1097/MIB.0000000000000268
Yansen Z, Lingang Z, Dali L, Mingyao L (2021) Inflammatory bowel disease susceptible gene GPR35 promotes bowel inflammation in mice. Yi Chuan 43(2):169–181. https://doi.org/10.16288/j.yczz.20-392
Yao H, Lv Y, Bai X, Yu Z, Liu X (2020) Prognostic value of CXCL17 and CXCR8 expression in patients with colon cancer. Oncol Lett 20(3):2711–2720. https://doi.org/10.3892/ol.2020.11819
Zhang Y, Shi T, He Y (2021) GPR35 regulates osteogenesis via the Wnt/GSK3β/β-catenin signaling pathway. Biochem Biophys Res Commun 556:171–178. https://doi.org/10.1016/j.bbrc.2021.03.084
Zhao P, Sharir H, Kapur A, Cowan A, Geller EB, Adler MW, Seltzman HH, Reggio PH, Heynen-Genel S, Sauer M, Chung TD, Bai Y, Chen W, Caron MG, Barak LS, Abood ME (2010) Targeting of the orphan receptor GPR35 by pamoic acid: a potent activator of extracellular signal-regulated kinase and β-arrestin2 with antinociceptive activity. Mol Pharmacol 78(4):560–568. https://doi.org/10.1124/mol.110.066746
Acknowledgements
This research was supported by the Basic Research Laboratory Program (BRL) and the Basic Science Research Program of the Korean National Research Foundation funded by the Korean Ministry of Science, ICT, and Future Planning (NRF-2020R1A4A1016142, NRF-2023R1A2C2002380, and NRF-2019R1A2C1005523).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares that there is no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Im, DS. Recent advances in GPR35 pharmacology; 5-HIAA serotonin metabolite becomes a ligand. Arch. Pharm. Res. 46, 550–563 (2023). https://doi.org/10.1007/s12272-023-01449-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12272-023-01449-y