Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration are critical events that contribute to the pathogenesis of vascular diseases such as atherosclerosis, restenosis, and hypertension. Recent findings have revealed that VSMC phenotype switching is associated with metabolic switch, which is related to the role of mitochondria. Mitochondrial dynamics are directly associated with mitochondrial function and cellular homeostasis. Interestingly, it has been suggested that mitochondrial dynamics and mitophagy play crucial roles in the regulation of VSMC proliferation and migration through various mechanisms. Especially, dynamin-related protein-1 and mitofusion-2 are two main molecules that play a key role in regulating mitochondrial dynamics to induce VSMC proliferation and migration. Therefore, this review describes the function and role of mitochondrial dynamics and mitophagy in VSMC homeostasis as well as the underlying mechanisms. This will provide insight into the development of innovative approaches to treat atherosclerosis.

Similar content being viewed by others
References
Achari AE, Jain SK (2017) Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. https://doi.org/10.3390/ijms18061321
Ahn J, Kim H, Yang KM (2020) Omega-hydroxyundec-9-enoic acid induction of breast cancer cells apoptosis through generation of mitochondrial ROS and phosphorylation of AMPK. Arch Pharm Res 43:735–743. https://doi.org/10.1007/s12272-020-01254-x
Archer SL (2013) Mitochondrial dynamics–mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251. https://doi.org/10.1056/NEJMra1215233
Badran A, Nasser SA, Mesmar J, El-Yazbi AF, Bitto A, Fardoun MM, Baydoun E, Eid AH (2020) Reactive oxygen species: modulators of phenotypic switch of vascular smooth muscle cells. Int J Mol Sci. https://doi.org/10.3390/ijms21228764
Bhansali S, Sohi K, Dhawan V (2021) Hypoxia-induced mitochondrial reactive oxygen species (mtROS) differentially regulates smooth muscle cell (SMC) proliferation of pulmonary and systemic vasculature. Mitochondrion 57:97–107. https://doi.org/10.1016/j.mito.2020.11.012
Chalmers S, Saunter C, Wilson C, Coats P, Girkin JM and McCarron JG (2012) Mitochondrial motility and vascular smooth muscle proliferation. Arterioscl Throm Vas 32:3000-+. https://doi.org/10.1161/Atvbaha.112.255174.
Chen KH, Guo X, Ma D, Guo Y, Li Q, Yang D, Li P, Qiu X, Wen S, Xiao RP, Tang J (2004) Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol 6:872–883. https://doi.org/10.1038/ncb1161
Chen C, Gao JL, Liu MY, Li SL, Xuan XC, Zhang XZ, Zhang XY, Wei YY, Zhen CL, Jin J, Shen X, Dong DL (2017) Mitochondrial fission inhibitors suppress endothelin-1-induced artery constriction. Cell Physiol Biochem 42:1802–1811. https://doi.org/10.1159/000479536
Chen Y, Su X, Qin Q, Yu Y, Jia M, Zhang H, Li H, Pei L (2020) New insights into phenotypic switching of VSMCs induced by hyperhomocysteinemia: role of endothelin-1 signaling. Biomed Pharmacother 123:109758. https://doi.org/10.1016/j.biopha.2019.109758
Chiong M, Cartes-Saavedra B, Norambuena-Soto I, Mondaca-Ruff D, Morales PE, Garcia-Miguel M, Mellado R (2014) Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Front Cell Dev Biol 2:72. https://doi.org/10.3389/fcell.2014.00072
Chiu YH, Lin SA, Kuo CH, Li CJ (2021) Molecular machinery and pathophysiology of mitochondrial dynamics. Front Cell Dev Biol 9:743892. https://doi.org/10.3389/fcell.2021.743892
Cho HY, Kleeberger SR (2020) Mitochondrial biology in airway pathogenesis and the role of NRF2. Arch Pharm Res 43:297–320. https://doi.org/10.1007/s12272-019-01182-5
Dasgupta A, Chen KH, Lima PDA, Mewburn J, Wu D, Al-Qazazi R, Jones O, Tian L, Potus F, Bonnet S, Archer SL (2021) PINK1-induced phosphorylation of mitofusin 2 at serine 442 causes its proteasomal degradation and promotes cell proliferation in lung cancer and pulmonary arterial hypertension. FASEB J 35:e21771. https://doi.org/10.1096/fj.202100361R
Ding Y, Li J, Liu Z, Liu H, Li H, Li Z (2017) IGF-1 potentiates sensory innervation signalling by modulating the mitochondrial fission/fusion balance. Sci Rep 7:43949. https://doi.org/10.1038/srep43949
Feng S, Gao L, Zhang D, Tian X, Kong L, Shi H, Wu L, Huang Z, Du B, Liang C, Zhang Y, Yao R (2019) MiR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2. Int J Biol Sci 15:2615–2626. https://doi.org/10.7150/ijbs.36995
Feng W, Wang J, Yan X, Zhang Q, Chai L, Wang Q, Shi W, Chen Y, Liu J, Qu Z, Li S, Xie X, Li M (2021) ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif 54:e13048. https://doi.org/10.1111/cpr.13048
Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13:75–88. https://doi.org/10.1038/nrm3266
Fuhrmann DC, Brune B (2017) Mitochondrial composition and function under the control of hypoxia. Redox Biol 12:208–215. https://doi.org/10.1016/j.redox.2017.02.012
Griendling KK, Ushio-Fukai M, Lassegue B, Alexander RW (1997) Angiotensin II signaling in vascular smooth muscle. New Concepts Hypertension 29:366–373. https://doi.org/10.1161/01.hyp.29.1.366
Guo YH, Chen K, Gao W, Li Q, Chen L, Wang GS, Tang J (2007) Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit. Biochem Biophys Res Commun 363:411–417. https://doi.org/10.1016/j.bbrc.2007.08.191
Han JH, Heo KS, Myung CS (2021) Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) accelerates vascular remodelling via p53 and JAK2-STAT3 regulation in vascular smooth muscle cells. Br J Pharmacol. https://doi.org/10.1111/bph.15631
He L, Zhou Q, Huang Z, Xu J, Zhou H, Lv D, Lu L, Huang S, Tang M, Zhong J, Chen JX, Luo X, Li L, Chen L (2019) PINK1/Parkin-mediated mitophagy promotes apelin-13-induced vascular smooth muscle cell proliferation by AMPKalpha and exacerbates atherosclerotic lesions. J Cell Physiol 234:8668–8682. https://doi.org/10.1002/jcp.27527
Heo KS, Fujiwara K, Abe J (2011) Disturbed-flow-mediated vascular reactive oxygen species induce endothelial dysfunction. Circ J 75:2722–2730. https://doi.org/10.1253/circj.cj-11-1124
Heo KS, Kim DU, Kim L, Nam M, Baek ST, Park SK, Park Y, Myung CS, Hwang SO, Hoe KL (2008) Activation of PKCbeta(II) and PKCtheta is essential for LDL-induced cell proliferation of human aortic smooth muscle cells via Gi-mediated Erk1/2 activation and Egr-1 upregulation. Biochem Biophys Res Commun 368:126–131. https://doi.org/10.1016/j.bbrc.2008.01.050
Hu C, Huang Y, Li L (2017) Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. Int J Mol Sci. https://doi.org/10.3390/ijms18010144
Huber N, Guimaraes S, Schrader M, Suter U, Niemann A (2013) Charcot-Marie-Tooth disease-associated mutants of GDAP1 dissociate its roles in peroxisomal and mitochondrial fission. EMBO Rep 14:545–552. https://doi.org/10.1038/embor.2013.56
Huynh DTN, Heo KS (2019) Therapeutic targets for endothelial dysfunction in vascular diseases. Arch Pharm Res 42:848–861. https://doi.org/10.1007/s12272-019-01180-7
Huynh DTN, Jin Y, Myung CS, Heo KS (2020) Inhibition of p90RSK is critical to abolish Angiotensin II-induced rat aortic smooth muscle cell proliferation and migration. Biochem Biophys Res Commun 523:267–273. https://doi.org/10.1016/j.bbrc.2019.12.053
Hwang B, Song JH, Park SL, Kim JT, Kim WJ, Moon SK (2020) Carnosine impedes PDGF-stimulated proliferation and migration of vascular smooth muscle cells in vitro and sprout outgrowth ex vivo. Nutrients. https://doi.org/10.3390/nu12092697
Jaminon A, Reesink K, Kroon A, Schurgers L (2019) The role of vascular smooth muscle cells in arterial remodeling: focus on calcification-related processes. Int J Mol Sci. https://doi.org/10.3390/ijms20225694
Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, Des Rosiers C, Forest A, Lin ZY, Gingras AC, Mitchell G, McBride HM, Shoubridge EA (2016) SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med 8:1019–1038. https://doi.org/10.15252/emmm.201506159
Jeon H, Jin Y, Myung CS, Heo KS (2021) Ginsenoside-Rg2 exerts anti-cancer effects through ROS-mediated AMPK activation associated mitochondrial damage and oxidation in MCF-7 cells. Arch Pharm Res 44:702–712. https://doi.org/10.1007/s12272-021-01345-3
Lee J, Kang H (2019) Hypoxia promotes vascular smooth muscle cell proliferation through microRNA-mediated suppression of cyclin-dependent kinase inhibitors. Cells. https://doi.org/10.3390/cells8080802
Lee W, Kim SH (2019) Autophagy at synapses in neurodegenerative diseases. Arch Pharm Res 42:407–415. https://doi.org/10.1007/s12272-019-01148-7
Lee AR, Moon DK, Siregar A, Moon SY, Jeon RH, Son YB, Kim BG, Hah YS, Hwang SC, Byun JH, Woo DK (2019a) Involvement of mitochondrial biogenesis during the differentiation of human periosteum-derived mesenchymal stem cells into adipocytes, chondrocytes and osteocytes. Arch Pharm Res 42:1052–1062. https://doi.org/10.1007/s12272-019-01198-x
Lee YJ, Park KS, Heo SH, Nam HS, Cho MK, Lee SH (2019b) Pifithrin-mu induces necroptosis through oxidative mitochondrial damage but accompanies epithelial-mesenchymal transition-like phenomenon in malignant mesothelioma cells under lactic acidosis. Arch Pharm Res 42:890–901. https://doi.org/10.1007/s12272-019-01181-6
Li L, Geng X, Tian L, Wang D, Wang Q (2020) Grape seed proanthocyanidins protect retinal ganglion cells by inhibiting oxidative stress and mitochondrial alteration. Arch Pharm Res 43:1056–1066. https://doi.org/10.1007/s12272-020-01272-9
Liang Y, Zhang Y, Liu M, Han X, Zhang J, Zhang X, Chu L (2020) Protective effect of quercetin against myocardial ischemia as a Ca(2+) channel inhibitor: involvement of inhibiting contractility and Ca(2+) influx via L-type Ca(2+) channels. Arch Pharm Res 43:808–820. https://doi.org/10.1007/s12272-020-01261-y
Lim S, Lee SY, Seo HH, Ham O, Lee C, Park JH, Lee J, Seung M, Yun I, Han SM, Lee S, Choi E, Hwang KC (2015) Regulation of mitochondrial morphology by positive feedback interaction between PKCdelta and Drp1 in vascular smooth muscle cell. J Cell Biochem 116:648–660. https://doi.org/10.1002/jcb.25016
Liu J, Ren Y, Kang L, Zhang L (2014) Oxidized low-density lipoprotein increases the proliferation and migration of human coronary artery smooth muscle cells through the upregulation of osteopontin. Int J Mol Med 33:1341–1347. https://doi.org/10.3892/ijmm.2014.1681
Lu ZY, Qi J, Yang B, Cao HL, Wang RY, Wang X, Chi RF, Guo CL, Yang ZM, Liu HM, Li B (2020) Diallyl trisulfide suppresses angiotensin II-induced vascular remodeling via inhibition of mitochondrial fission. Cardiovasc Drug Ther 34:605–618. https://doi.org/10.1007/s10557-020-07000-1
Ma K, Chen G, Li W, Kepp O, Zhu Y, Chen Q (2020) Mitophagy, mitochondrial homeostasis, and cell fate. Front Cell Dev Biol 8:467. https://doi.org/10.3389/fcell.2020.00467
Maimaitijiang A, Zhuang X, Jiang X, Li Y (2016) Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells. Biochem Biophys Res Commun 471:474–478. https://doi.org/10.1016/j.bbrc.2016.02.051
Mandal S, Freije WA, Guptan P, Banerjee U (2010) Metabolic control of G1-S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system. J Cell Biol 188:473–479. https://doi.org/10.1083/jcb.200912024
Marsboom G, Toth PT, Ryan JJ, Hong Z, Wu X, Fang YH, Thenappan T, Piao L, Zhang HJ, Pogoriler J, Chen Y, Morrow E, Weir EK, Rehman J, Archer SL (2012) Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 110:1484–1497. https://doi.org/10.1161/CIRCRESAHA.111.263848
McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, Chalmers S (2013) From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res 50:357–371. https://doi.org/10.1159/000353883
Mishra P, Chan DC (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15:634–646. https://doi.org/10.1038/nrm3877
Morita M, Prudent J, Basu K, Goyon V, Katsumura S, Hulea L, Pearl D, Siddiqui N, Strack S, McGuirk S, St-Pierre J, Larsson O, Topisirovic I, Vali H, McBride HM, Bergeron JJ, Sonenberg N (2017) mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol Cell 67(922–935):e925. https://doi.org/10.1016/j.molcel.2017.08.013
Motobayashi Y, Izawa-Ishizawa Y, Ishizawa K, Orino S, Yamaguchi K, Kawazoe K, Hamano S, Tsuchiya K, Tomita S, Tamaki T (2009) Adiponectin inhibits insulin-like growth factor-1-induced cell migration by the suppression of extracellular signal-regulated kinase 1/2 activation, but not Akt in vascular smooth muscle cells. Hypertens Res 32:188–193. https://doi.org/10.1038/hr.2008.19
Nguyen EK, Koval OM, Noble P, Broadhurst K, Allamargot C, Wu M, Strack S, Thiel WH, Grumbach IM (2018) CaMKII (Ca(2+)/Calmodulin-Dependent Kinase II) in mitochondria of smooth muscle cells controls mitochondrial mobility, migration, and neointima formation. Arterioscler Thromb Vasc Biol 38:1333–1345. https://doi.org/10.1161/ATVBAHA.118.310951
Nguyen TLL, Huynh DTN, Jin Y, Jeon H, Heo KS (2021) Protective effects of ginsenoside-Rg2 and -Rh1 on liver function through inhibiting TAK1 and STAT3-mediated inflammatory activity and Nrf2/ARE-mediated antioxidant signaling pathway. Arch Pharm Res 44:241–252. https://doi.org/10.1007/s12272-020-01304-4
Owusu-Ansah E, Yavari A, Mandal S, Banerjee U (2008) Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet 40:356–361. https://doi.org/10.1038/ng.2007.50
Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20:1013–1022. https://doi.org/10.1038/s41556-018-0176-2
Parra V, Bravo-Sagua R, Norambuena-Soto I, Hernandez-Fuentes CP, Gomez-Contreras AG, Verdejo HE, Mellado R, Chiong M, Lavandero S, Castro PF (2017) Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells. Biochim Biophys Acta Mol Basis Dis 1863:2891–2903. https://doi.org/10.1016/j.bbadis.2017.07.018
Peng W, Cai G, Xia Y, Chen J, Wu P, Wang Z, Li G, Wei D (2019) Mitochondrial dysfunction in atherosclerosis. DNA Cell Biol 38:597–606. https://doi.org/10.1089/dna.2018.4552
Planas-Rigol E, Terrades-Garcia N, Corbera-Bellalta M, Lozano E, Alba MA, Segarra M, Espigol-Frigole G, Prieto-Gonzalez S, Hernandez-Rodriguez J, Preciado S, Lavilla R, Cid MC (2017) Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Ann Rheum Dis 76:1624–1634. https://doi.org/10.1136/annrheumdis-2016-210792
Riis S, Murray JB, O’Connor R (2020) IGF-1 signalling regulates mitochondria dynamics and turnover through a conserved GSK-3beta-Nrf2-BNIP3 pathway. Cells. https://doi.org/10.3390/cells9010147
Salabei JK, Hill BG (2013) Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation. Redox Biol 1:542–551. https://doi.org/10.1016/j.redox.2013.10.011
Shi N, Chen SY (2018) Smooth muscle cells move with mitochondria. Arterioscler Thromb Vasc Biol 38:1255–1257. https://doi.org/10.1161/ATVBAHA.118.311085
Shi J, Yang Y, Cheng A, Xu G, He F (2020) Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol 319:H613–H631. https://doi.org/10.1152/ajpheart.00220.2020
Shin MK, Cheong JH (2019) Mitochondria-centric bioenergetic characteristics in cancer stem-like cells. Arch Pharm Res 42:113–127. https://doi.org/10.1007/s12272-019-01127-y
Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–360. https://doi.org/10.1042/EBC20170104
Tondera D, Czauderna F, Paulick K, Schwarzer R, Kaufmann J, Santel A (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118:3049–3059. https://doi.org/10.1242/jcs.02415
Tsushima M, Liu J, Hirao W, Yamazaki H, Tomita H, Itoh K (2020) Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch Pharm Res 43:286–296. https://doi.org/10.1007/s12272-019-01188-z
Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14:1939–1951. https://doi.org/10.1089/ars.2010.3779
Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594:509–525. https://doi.org/10.1113/JP271301
Wang H, Robichaux WG, Wang Z, Mei FC, Cai M, Du G, Chen J, Cheng X (2016) Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury. Sci Rep 6:36552. https://doi.org/10.1038/srep36552
Wang Y, Zhang X, Chen W, Gao L, Li J, Song T, Chi J, Zhang X, Shi Z, Dong Y, Yin X, Liu Y (2020) Cortistatin ameliorates Ang II-induced proliferation of vascular smooth muscle cells by inhibiting autophagy through SSTR3 and SSTR5. Life Sci 253:117726. https://doi.org/10.1016/j.lfs.2020.117726
Wang F, Zhen Y, Si C, Wang C, Pan L, Chen Y, Liu X, Kong J, Nie Q, Sun M, Han Y, Ye Z, Liu P, Wen J (2021) WNT5B promotes vascular smooth muscle cell dedifferentiation via mitochondrial dynamics regulation in chronic thromboembolic pulmonary hypertension. J Cell Physiol. https://doi.org/10.1002/jcp.30543
Wu YC, Wang WT, Lee SS, Kuo YR, Wang YC, Yen SJ, Lee MY, Yeh JL (2019) Glucagon-like peptide-1 receptor agonist attenuates autophagy to ameliorate pulmonary arterial hypertension through Drp1/NOX- and Atg-5/Atg-7/Beclin-1/LC3beta pathways. Int J Mol Sci. https://doi.org/10.3390/ijms20143435
Zhang W, Shu C, Li Q, Li M, Li X (2015) Adiponectin affects vascular smooth muscle cell proliferation and apoptosis through modulation of the mitofusin-2-mediated Ras-Raf-Erk1/2 signaling pathway. Mol Med Rep 12:4703–4707. https://doi.org/10.3892/mmr.2015.3899
Zhang X, Chen W, Li J, Qi S, Hong S, Wang Y, Gao L, Shi Z, Liu Y, Liu W, Chi Y, Liu C, Fu Y, Yin X (2018) Involvement of mitochondrial fission in calcium sensing receptor-mediated vascular smooth muscle cells proliferation during hypertension. Biochem Biophys Res Commun 495:454–460. https://doi.org/10.1016/j.bbrc.2017.11.048
Zhuang X, Maimaitijiang A, Li Y, Shi H, Jiang X (2017) Salidroside inhibits high-glucose induced proliferation of vascular smooth muscle cells via inhibiting mitochondrial fission and oxidative stress. Exp Ther Med 14:515–524. https://doi.org/10.3892/etm.2017.4541
Acknowledgements
This article was supported by National Research Foundation of Korea (NRF) (2019R1C1C100733112).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
None.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Huynh, D.T.N., Heo, KS. Role of mitochondrial dynamics and mitophagy of vascular smooth muscle cell proliferation and migration in progression of atherosclerosis. Arch. Pharm. Res. 44, 1051–1061 (2021). https://doi.org/10.1007/s12272-021-01360-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12272-021-01360-4