Skip to main content
Log in

Clarithromycin decreases rhinovirus replication and cytokine production in nasal epithelial cells from subjects with bronchial asthma: effects on IL-6, IL-8 and IL-33

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Rhinoviral infection is associated with an increased risk of asthma attacks. The macrolide clarithromycin decreases cytokine production in nasopharyngeal aspirates from patients with wheezing, but the effects of macrolides on cytokine production in nasal epithelial cells obtained from asthmatic subjects remain unclear. Here, human nasal epithelial cells were infected with type-14 rhinovirus (RV14), a major RV group. Titers and RNA of RV14 and cytokine concentrations, including IL-1β and IL-6, were higher in the supernatants of the cells obtained from subjects with bronchial asthma (asthmatic group) than in those from the non-asthmatic group. Pretreatment with clarithromycin decreased RV14 titers, viral RNA and cytokine concentrations, and susceptibility to RV14 infection. Pretreatment with clarithromycin also decreased IL-33 production, which was detected after infection. Pretreatment with clarithromycin decreased the expression of intercellular adhesion molecule-1, the receptor for RV14, after infection, the number and fluorescence intensity of the acidic endosomes through which RV RNA enters the cytoplasm, and the activation of nuclear factor kappa-B proteins in nuclear extracts. These findings suggested that RV replication and cytokine production may be enhanced in nasal epithelial cells obtained from subjects with bronchial asthma and may be modulated by clarithromycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barnes PJ (2015) Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J Allegy Clin Immunol 136:531–545

    Article  Google Scholar 

  • Bateman ED, Boushey HA, Bousquet J, Busse WW, Clark TJ, Pauwels RA, Pedersen SE, GOAL Investigators Group (2004) Can guideline-defined asthma control be achieved? The gaining optimal asthma control study. Am J Respir Crit Care Med 170:836–844

    Article  PubMed  Google Scholar 

  • Beale J, Jayaraman A, Jackson DJ, Macintyre JD, Edwards MR, Walton RP, Zhu J, Ching YM, Shamji B, Edwards M, Westwick J, Cousins DJ, Hwang YY, McKenzie A, Johnston SL, Bartlett NW (2014) Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci Transl Med 6:256ra134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosnar M, Kragol G, Koštrun S, Vujasinović I, Bošnjak B, Mihaljević VB, Ištuk ZM, Kapić S, Hrvačić B, Brajša K, Tavčar B, Jelić D, Glojnarić I, Verbanac D, Čulić O, Padovan J, Alihodžić S, Haber VE, Spaventi R (2012) N′-Substituted-2′-O,3′-N-carbonimidoyl bridged macrolides: novel anti-inflammatory macrolides without antimicrobial activity. J Med Chem 55:6111–6123

    Article  CAS  PubMed  Google Scholar 

  • Casasnovas JM, Springer TA (1994) Pathway of rhinovirus disruption by soluble intercellular adhesion molecule 1 (ICAM-1): an intermediate in which ICAM-1 is bound and RNA is released. J Virol 68:5882–5889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YS, Park JA, Kim J, Rho SS, Park H, Kim YM, Kwon YG (2012) Nuclear IL-33 is a transcriptional regulator of NF-κB p65 and induces endothelial cell activation. Biochem Biophys Res Commun 421:305–311

    Article  CAS  PubMed  Google Scholar 

  • Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Barlett NW, Kebadze T, Mallia P, Stanciu LA, Parker HL, Alater L, Lewis-Antes A, Kon OM, Holgate ST, Davies DE, Kotenko SV, Papi A, Johnston SL (2006) Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med 12:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Corne JM, Marshall C, Smith S, Schreiber J, Sanderson G, Holgate ST, Johnston SL (2002) Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet 359:831–834

    Article  PubMed  Google Scholar 

  • Corren J, Lemanske RF Jr, Hanania N, Korenblat PE, Parsey MV, Arron JR, Harris JM, Scheerens H, Wu LC, Su Z, Mosesova S, Eisner MD, Bohen S, Matthews JG (2011) Lebrikizumab treatment in adults with asthma. New Engl J Med 365:1088–1098

    Article  CAS  PubMed  Google Scholar 

  • de Kluijver J, Grünberg K, Pons D, de Klerk EP, Dick CR, Sterk PJ, Hiemstra PS (2003) Interleukin-1β and interleukin-1ra levels in nasal lavages during experimental rhinovirus infection in asthmatic and non-asthmatic subjects. Clin Exp Allergy 33:1415–1418

    Article  PubMed  Google Scholar 

  • Demyanets S, Konya V, Kastl SP, Kaun C, Rauscher S, Niessner A, Pentz R, Pfaffenberger S, Rychli K, Lemberger CE, de Martin R, Heinemann A, Huk I, Gröger M, Maurer G, Huber K, Wojta J (2011) Interleukin-33 induces expression of adhesion molecules and inflammatory activation in human endothelial cells and in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 31:2080–2090

    Article  CAS  PubMed  Google Scholar 

  • Essilfire AT, Horvat JC, Kim R, Mayall JR, Pinkerton JW, Beckett EL, Starkey MR, Simpson JL, Foster PS, Gibson PG, Hansbro PM (2015) Macrolide therapy suppress key features of experimental steroid-sensitive and steroid-insensitive asthma. Thorax 70:458–467

    Article  Google Scholar 

  • Fonseca-Aten M, Okada PJ, Bowlware KL, Chavez-Bueno S, Mejias A, Rois AM, Katz K, Ng S, McCracken GH, Ramilo O, Hardy RD (2006) Effect of clarithromycin on cytokines and chemokines in children with an acute exacerbation of recurrent wheezing: a double-blind, randomized, placebo-controlled trial. Ann Allergy Asthma Immunol 97:457–463

    Article  CAS  PubMed  Google Scholar 

  • Fraenkel DJ, Bardin PG, Sanderson G, Lampe F, Johnston SL, Holgate ST (1995) Lower airways inflammation during rhinovirus colds in normal and in asthmatic subjects. Am J Respir Crit Care Med 151:879–886

    CAS  PubMed  Google Scholar 

  • Funakoshi-Tago M, Tago K, Sato Y, Tominaga S, Kasahara T (2011) JAK2 is an important signal transducer in IL-33-induced NF-κB activation. Cell Signal 23:363–370

    Article  CAS  PubMed  Google Scholar 

  • Gielen V, Johnston SL, Edwards MR (2010) Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J 36:646–654

    Article  CAS  PubMed  Google Scholar 

  • Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marior CW, Kamarck ME, McClelland A (1989) The major human rhinovirus receptor is ICAM-1. Cell 56:839–847

    Article  CAS  PubMed  Google Scholar 

  • Halder P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID (2009) Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 360:973–984

    Article  Google Scholar 

  • Inoue D, Yamaya M, Sasaki T, Hosoda M, Kubo H, Numazaki M, Tomioka Y, Yasuda H, Sekizawa K, Nishimura H, Sasaki H (2006) Mechanisms of mucin production by rhinovirus infection in cultured human tracheal surface epithelium and submucosal glands. Respir Physiol Neurobiol 154:484–499

    Article  CAS  PubMed  Google Scholar 

  • Ishinaga H, Kitano M, Tada M, D’Alessandro-Gabazza CN, Gabazza EC, Shah SA, Tekeuchi K (2016) Interleukin-33 induces mucin gene expression and goblet cell hyperplasia in human nasal epithelial cells. Cytokine 90:60–65

    Article  PubMed  CAS  Google Scholar 

  • Jackson DJ, Johnston SL (2010) The role of viruses in acute exacerbations of asthma. J Allergy Clin Immunol 126:1178–1187

    Article  CAS  Google Scholar 

  • Jackson DJ, Makrinioti H, Rana BM, Shamji BW, Trujillo-Torralbo MB, Footitt J, Del-Rosario Jerico, Telcian AG, Nikonova A, Zhu J, Aniscenko J, Gogsadze L, Bakhsoliani E, Traub S, Dhariwal J, Porter J, Hunt D, Hunt T, Hunt T, Stanciu LA, Khaitov M, Bartlett NW, Edwards MR, Kon OM, Mallia P, Papadopoulos NG, Akdis CA, Westwick J, Edwards MJ, Cousins DJ, Walton RP, Johnston SL (2014) IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med 190:1373–1382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, Symington P, O’Toole S, Mynt SH, Tyrrell DA, Holgate ST (1995) Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. Br Med J 310:1225–1229

    Article  CAS  Google Scholar 

  • Kempuraj D, Twait EC, Williard DE, Yuan Z, Meyerholz DK, Samuel I (2013) TNF-α stimulation increased IL-33 release while IL-33 stimulation increased proinflammatory cytokine release. PLoS ONE 8:e56866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemanske RF, Dick EC, Swenson CA, Vrtis RF, Busse WW (1989) Rhinovirus upper respiratory infection increases airway hyperreactivity and late asthmatic reactions. J Clin Investig 83:1–10

    Article  PubMed  Google Scholar 

  • Lusamba Kalonji N, Nomura K, Kawase T, Ota C, Kubo H, Sato T, Yanagisawa T, Sunazuka T, Ōmura S, Yamaya M (2015) The non-antibiotic macrolide EM900 inhibits rhinovirus infection and cytokine production in human airway epithelial cells. Physiol Rep 3:e12557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manolitsas ND, Trigg CJ, McAulay AE, Wang JH, Jordan SE, D’Ardenne AJ, Davies RJ (1994) The expression of intercellular adhesion molecule-1 and the & 1-integrins in asthma. Eur Respir J 7:1439–1444

    Article  CAS  PubMed  Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Ann Rev Biochem 55:663–700

    Article  CAS  PubMed  Google Scholar 

  • Minor TE, Baker JW, Dick EC, DeMeo AN, Oullette JJ, Cohen M, Reed CE (1974) Greater frequency of viral respiratory infections in asthmatic children as compared with their non-asthmatic siblings. J Pediatr 85:472–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nass R, Rao R (1998) Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis. J Biol Chem 273:21054–21060

    Article  CAS  PubMed  Google Scholar 

  • Nicholson KG, Kent J, Ireland DC (1993) Respiratory viruses and exacerbations of asthma in adults. Br Med J 307:982–986

    Article  CAS  Google Scholar 

  • Ohta K, Miyamoto T, Amagasaki T, Yamamoto M (2009) Efficacy and safety of omalizumab in an Asian population with moderate-to-severe persistent athma. Respirology 14:1156–1165

    Article  PubMed  Google Scholar 

  • Papi A, Johnston SL (1999) Respiratory epithelial cell expression of vascular cell adhesion molecule-1 and its up-regulation by rhinovirus infection via NF-κB and GATA transcription factors. J Biol Chem 274:30041–30051

    Article  CAS  PubMed  Google Scholar 

  • Pauwels RA, Löfdahl CG, Postma DS, Tattersfield AE, O’Byrne P, Barnes PJ, Ullman A (1997) Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. N Engl J Med 337:1405–1411

    Article  CAS  PubMed  Google Scholar 

  • Pérez L, Carrasco L (1993) Entry of poliovirus into cells does not require a low-pH step. J Virol 67:4543–4548

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin BK, Druce H, Ramirez OE, Palmer R (1997) Effect of clarithromycin on nasal mucus properties in healthy subjects and in patients with purulent rhinitis. Am J Respir Crit Care Med 155:2018–2023

    Article  CAS  PubMed  Google Scholar 

  • Shibata H, Tsuchikawa H, Hayashi T, Matsumori N, Murata M, Usui T (2015) Modification of bafilomycin structure to efficiently synthesize solid-state NMR probes that selectively bind to vacuolar-type ATPase. Chem Asian J 10:915–924

    Article  CAS  PubMed  Google Scholar 

  • Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG (2008) Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med 177:148–155

    Article  CAS  PubMed  Google Scholar 

  • Sin DD, Man J, Sharpe H, Gan WQ, Man SF (2004) Pharmacologic management to reduce exacerbations in adults with asthma: a systematic review and meta analysis. JAMA 292:367–376

    Article  CAS  PubMed  Google Scholar 

  • Sugawara A, Sueki A, Hirose T, Shima H, Akagawa KS, Omura S, Sunazuka T (2012) Novel 12-membered non-antibiotic macrolides, EM900 series with anti-inflammatory and/or immunomodulatory activity; synthesis, structure-activity relationships and in vivo study. J Antibiot (Tokyo) 65:487–490

    Article  CAS  Google Scholar 

  • Suzuki T, Yamaya M, Sekizawa K, Hosoda M, Yamada N, Ishizuka S, Nakayama K, Yanai M, Numazaki Y, Sasaki H (2001) Bafilomycin A1 inhibits rhinovirus infection in human airway epithelium: effects on endosome and ICAM-1. Am J Physiol 280:L1115–L1127

    CAS  Google Scholar 

  • Suzuki T, Yamaya M, Sekizawa K, Hosoda M, Yamada N, Ishizuka S, Yoshino A, Yasuda H, Takahashi H, Nishimura H, Sasaki H (2002) Erythromycin inhibits rhinovirus infection in cultured human tracheal epithelial cells. Am J Respir Crit Care Med 165:1113–1118

    Article  PubMed  Google Scholar 

  • Tanabe T, Kanoh S, Tsushima K, Yamazaki Y, Kubo K, Rubin KR (2011) Clarithromycin inhibits interleukin-13-induced goblet cell hyperplasia in human airway cells. Am J Respir Cell Mol Biol 45:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Tarlo S, Broder I, Spence L (1979) A prospective study of respiratory infection in adult asthmatics and their normal spouses. Clin Allergy 9:293–301

    Article  CAS  PubMed  Google Scholar 

  • Terajima M, Yamaya M, Sekizawa K, Okinaga S, Suzuki T, Yamada N, Nakayama K, Ohrui T, Oshima T, Numazaki Y, Sasaki H (1997) Rhinovirus infection of primary cultures of human tracheal epithelium: role of ICAM-1 and IL-1β. Am J Physiol 273:L749–L759

    CAS  PubMed  Google Scholar 

  • U.S. Department of Health and Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute (2015) Global initiative for asthma: global strategy for asthma management and prevention 2015. www.ginasthma.org/local/uploads/files/GINA_Report_2015_May19.pdf

  • van der Kraan AG, Chai RC, Singh PP, Lang BJ, Xu J, Gillespie MT, Price JT, Quinn JM (2013) HSP90 inhibitors enhance differentiation and MITF (microphthalmia transcription factor) activity in osteoclast progenitors. Biochem J 451:235–244

    Article  PubMed  CAS  Google Scholar 

  • Wan KS, Liu YC, Huang CS, Su YM (2016) Effects of low-dose clarithromycin added to fluticasone on inflammatory markers and pulmonary function test among children with asthma: a randomized clinical trial. Allergy Rhinol 7:e131–e134

    Article  Google Scholar 

  • Wark PAB, Gibson PG (2006) Asthma exacerbation. Thorax 61:909–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, Holgate ST, Davies DE (2005) Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 201:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegner CD, Gundel RH, Reilly P, Haynes N, Letts LG, Rothlein R (1990) Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247:456–459

    Article  CAS  PubMed  Google Scholar 

  • Yamaya M (2012) Virus infection-induced bronchial asthma exacerbation. Pulm Med 2012:834826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaya M, Shinya K, Hatachi Y, Kubo H, Asada M, Yasuda H, Nishimura H, Nagatomi R (2010) Clarithromycin inhibits type A seasonal influenza virus infection in human airway epithelial cells. J Pharmacol Exp Ther 333:81–90

    Article  CAS  PubMed  Google Scholar 

  • Yamaya M, Azuma A, Takizawa H, Kadota J, Tamaoki J, Kudoh S (2012) Macrolide effects on the prevention of COPD exacerbations. Eur Respir J 40:485–494

    Article  CAS  PubMed  Google Scholar 

  • Yamaya M, Nomura K, Arakawa K, Nishimura H, Lusamba Kalonji N, Kubo H, Nagatomi R, Kawase T (2016) Increased rhinovirus replication in nasal mucosa cells in allergic subjects is associated with increased ICAM-1 levels and endosomal acidification and is inhibited by l-carbocisteine. Immun Inflamm Dis 4:166–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng M, Li ZY, Ma J, Cao PP, Wang H, Cui YH, Liu Z (2015) Clarithromycin and dexamethasone show similar anti-inflammatory effects on distinct phenotypic chronic rhinosinusitis: an explant model study. BMC Immunol 16:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Z, Tang W, Ray A, Wu Y, Einarsson O, Landry ML, Gwaltney Jr J, Elias JA (1996) Rhinovirus stimulation of interleukin-6 in vivo and in vitro. Evidence for nuclear factor & kappa B-dependent transcriptional activation. J Clin Investig 97:421–430

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Biomedical Research Unit of Tohoku University Hospital for technical support. Dr. Yamaya is a Professor in the Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine. This department was funded by eight pharmaceutical companies, which are as follows: Kyorin Pharmaceutical Co. Ltd., Mylan EPD, LLC., Taisho Toyama Pharmaceutical Co., Ltd., Toyama Chemical Co., Ltd., Nippon Boehringer-Ingelheim Co., Ltd., Teijin Pharma Co., Ltd., and AstraZeneca Co. Ltd. and Otsuka Pharmaceutical Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsuo Yamaya.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaya, M., Nomura, K., Arakawa, K. et al. Clarithromycin decreases rhinovirus replication and cytokine production in nasal epithelial cells from subjects with bronchial asthma: effects on IL-6, IL-8 and IL-33. Arch. Pharm. Res. 43, 526–539 (2020). https://doi.org/10.1007/s12272-017-0950-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-017-0950-x

Keywords

Navigation