Skip to main content
Log in

Integrating autophagy and metabolism in cancer

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Autophagy is a catabolic process mediated by lysosomal degradation and is a key player in regulating cellular metabolism during cancer progression. Autophagy maintains cellular homeostasis by degrading unnecessary cellular molecules, which also prevents tumorigenesis. Conversely, autophagy also provides nutrients that support malignant tumor growth in advanced tumors. Multiple novel mechanisms have been proposed to explain the tumor-facilitating role of autophagy. Autophagy regulates diverse metabolic pathways that promote tumor proliferation and survival, which are closely associated with oncogenic activators and tumor suppressors. Autophagy has been implicated in cancer cell invasion and metastasis. Accordingly, autophagy has emerged as a tumor-promoting mechanism that facilitates cancer cell growth and survival. Mechanistic studies of autophagy during tumor progression may identify potential targets that can be utilized to disrupt cancer development. Understanding the molecular networks integrating metabolic changes and autophagy in cancer cells could provide novel insights to enhance targeted cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akalay, I., B. Janji, M. Hasmim, M.Z. Noman, F. Andre, P. De Cremoux, P. Bertheau, C. Badoual, P. Vielh, A.K. Larsen, M. Sabbah, T.Z. Tan, J.H. Keira, N.T. Hung, J.P. Thiery, F. Mami-Chouaib, and S. Chouaib. 2013. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Research 73: 2418–2427.

    Article  CAS  PubMed  Google Scholar 

  • Anastasiou, D., Y. Yu, W.J. Israelsen, Jiang JK, M.B. Boxer, B.S. Hong, W. Tempel, S. Dimov, M. Shen, A. Jha, H. Yang, K.R. Mattaini, C.M. Metallo, B.P. Fiske, K.D. Courtney, S. Malstrom, T.M. Khan, C. Kung, A.P. Skoumbourdis, H. Veith, N. Southall, M.J. Walsh, K.R. Brimacombe, W. Leister, S.Y. Lunt, Z.R. Johnson, K.E. Yen, K. Kunii, S.M. Davidson, H.R. Christofk, C.P. Austin, J. Inglese, M.H. Harris, J.M. Asara, G. Stephanopoulos, F.G. Salituro, S. Jin, L. Dang, D.S. Auld, H.W. Park, L.C. Cantley, C.J. Thomas, and M.G. Vander Heiden. 2012. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chemical Biology 8: 839–847.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avivar-Valderas, A., E. Bobrovnikova-Marjon, J. Alan Diehl, N. Bardeesy, J. Debnath, and J.A. Aguirre-Ghiso. 2013. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32: 4932–4940.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bar-Peled, L., L.D. Schweitzer, R. Zoncu, and D.M. Sabatini. 2012. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150: 1196–1208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Byers, L.A., L. Diao, J. Wang, P. Saintigny, L. Girard, M. Peyton, L. Shen, Y. Fan, U. Giri, P.K. Tumula, M.B. Nilsson, J. Gudikote, H. Tran, R.J. Cardnell, D.J. Bearss, S.L. Warner, J.M. Foulks, S.B. Kanner, V. Gandhi, N. Krett, S.T. Rosen, E.S. Kim, R.S. Herbst, G.R. Blumenschein, J.J. Lee, S.M. Lippman, K.K. Ang, G.B. Mills, W.K. Hong, J.N. Weinstein, Ii Wistuba, K.R. Coombes, J.D. Minna, and J.V. Heymach. 2013. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 19: 279–290.

    Article  CAS  Google Scholar 

  • Carew, J.S., K.R. Kelly, and S.T. Nawrocki. 2012. Autophagy as a target for cancer therapy: new developments. Cancer Management and Research 4: 357–365.

    PubMed Central  PubMed  Google Scholar 

  • Chen, N., N. Eritja, R. Lock, and J. Debnath. 2013. Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3-kinase in three-dimensional culture. Oncogene 32: 2543–2554.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheong, H., T. Lindsten, J. Wu, C. Lu, and C.B. Thompson. 2011. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proceedings of the National Academy of Sciences of the United States of America 108: 11121–11126.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheong, H., C. Lu, T. Lindsten, and C.B. Thompson. 2012. Therapeutic targets in cancer cell metabolism and autophagy. Nature Biotechnology 30: 671–678.

    Article  CAS  PubMed  Google Scholar 

  • Cufi, S., A. Vazquez-Martin, C. Oliveras-Ferraros, B. Martin-Castillo, L. Vellon, and J.A. Menendez. 2011. Autophagy positively regulates the CD44(+) CD24(-/low) breast cancer stem-like phenotype. Cell Cycle 10: 3871–3885.

    Article  CAS  PubMed  Google Scholar 

  • Cuyas, E., B. Corominas-Faja, and J.A. Menendez. 2014. The nutritional phenome of EMT-induced cancer stem-like cells. Oncotarget 5: 3970–3982.

    PubMed Central  PubMed  Google Scholar 

  • Deberardinis, R.J., J.J. Lum, G. Hatzivassiliou, and C.B. Thompson. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism 7: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Duran, A., J.F. Linares, A.S. Galvez, K. Wikenheiser, J.M. Flores, M.T. Diaz-Meco, and J. Moscat. 2008. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13: 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Duran, R.V., W. Oppliger, A.M. Robitaille, L. Heiserich, R. Skendaj, E. Gottlieb, and M.N. Hall. 2012. Glutaminolysis activates Rag-mTORC1 signaling. Molecular Cell 47: 349–358.

    Article  CAS  PubMed  Google Scholar 

  • Eng, C.H., K. Yu, J. Lucas, E. White, and R.T. Abraham. 2010. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Science Signal 3: ra31.

    Google Scholar 

  • Feng, Y., D. He, Z. Yao, and D.J. Klionsky. 2014. The machinery of macroautophagy. Cell Research 24: 24–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galluzzi, L., F. Pietrocola, B. Levine, and G. Kroemer. 2014. Metabolic control of autophagy. Cell 159: 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  • Guo, J.Y., G. Karsli-Uzunbas, R. Mathew, S.C. Aisner, J.J. Kamphorst, A.M. Strohecker, G. Chen, S. Price, W. Lu, and X. Teng. 2013. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes and Development 27: 1447–1461.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han, J.M., S.J. Jeong, M.C. Park, G. Kim, N.H. Kwon, H.K. Kim, S.H. Ha, S.H. Ryu, and S. Kim. 2012. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149: 410–424.

    Article  CAS  PubMed  Google Scholar 

  • Haq, R., J. Shoag, P. Andreu-Perez, S. Yokoyama, H. Edelman, G.C. Rowe, D.T. Frederick, A.D. Hurley, A. Nellore, A.L. Kung, J.A. Wargo, J.S. Song, D.E. Fisher, Z. Arany, and H.R. Widlund. 2013. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23: 302–315.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hart, L.S., J.T. Cunningham, T. Datta, S. Dey, F. Tameire, S.L. Lehman, B. Qiu, H. Zhang, G. Cerniglia, M. Bi, Y. Li, Y. Gao, H. Liu, C. Li, A. Maity, A. Thomas-Tikhonenko, A.E. Perl, A. Koong, S.Y. Fuchs, J.A. Diehl, I.G. Mills, D. Ruggero, and C. Koumenis. 2012. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. The Journal of Clinical Investigation 122: 4621–4634.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karsli-Uzunbas, G., J.Y. Guo, S. Price, X. Teng, S.V. Laddha, S. Khor, N.Y. Kalaany, T. Jacks, C.S. Chan, and J.D. Rabinowitz. 2014. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discovery 4: 914–927.

  • Kenific, C.M., and J. Debnath. 2014. Cellular and metabolic functions for autophagy in cancer cells. Trends in Cell Biology 25: 37–45.

    Article  PubMed  Google Scholar 

  • Kim, M.J., S.J. Woo, C.H. Yoon, J.S. Lee, S. An, Y.H. Choi, S.G. Hwang, G. Yoon, and S.J. Lee. 2011a. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. Journal of Biological Chemistry 286: 12924–12932.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, M.S., E.G. Jeong, C.H. Ahn, S.S. Kim, S.H. Lee, and N.J. Yoo. 2008. Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Human Pathology 39: 1059–1063.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T.H., E.G. Hur, S.J. Kang, J.A. Kim, D. Thapa, Y.M. Lee, S.K. Ku, Y. Jung, and M.K. Kwak. 2011b. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Research 71: 2260–2275.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu, M., H. Kurokawa, S. Waguri, K. Taguchi, A. Kobayashi, Y. Ichimura, Y.S. Sou, I. Ueno, A. Sakamoto, K.I. Tong, M. Kim, Y. Nishito, S. Iemura, T. Natsume, T. Ueno, E. Kominami, H. Motohashi, K. Tanaka, and M. Yamamoto. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 12: 213–223.

    CAS  PubMed  Google Scholar 

  • Kroemer, G., G. Marino, and B. Levine. 2010. Autophagy and the integrated stress response. Molecular Cell 40: 280–293.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levy, J.M.M., J.C. Thompson, A.M. Griesinger, V. Amani, A.M. Donson, D.K. Birks, M.J. Morgan, D.M. Mirsky, M.H. Handler, and N.K. Foreman. 2014. Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors. Cancer Discovery 4: 773–780. CD-14-0049.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, S., C. Mo, Q. Peng, X. Kang, C. Sun, K. Jiang, L. Huang, Y. Lu, J. Sui, X. Qin, and Y. Liu. 2013. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell. PLoS ONE 8: e71273.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang, X.H., S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh, and B. Levine. 1999. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Liu, E.Y., and K.M. Ryan. 2012. Autophagy and cancer–issues we need to digest. Journal of Cell Science 125: 2349–2358.

    Article  PubMed  Google Scholar 

  • Lock, R., and J. Debnath. 2011. Ras, autophagy and glycolysis. Cell Cycle 10: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  • Lock, R., C.M. Kenific, A.M. Leidal, E. Salas, and J. Debnath. 2014. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discovery 4: 466–479.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lock, R., S. Roy, C.M. Kenific, J.S. Su, E. Salas, S.M. Ronen, and J. Debnath. 2011. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Molecular Biology of the Cell 22: 165–178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorin, S., M.J. Tol, C. Bauvy, A. Strijland, C. Pous, A.J. Verhoeven, P. Codogno, and A.J. Meijer. 2013. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9: 850–860.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lozy, F., and V. Karantza. 2012. Autophagy and cancer cell metabolism. Seminars in Cell and Developmental Biology 23: 395–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lum, J.J., D.E. Bauer, M. Kong, M.H. Harris, C. Li, T. Lindsten, and C.B. Thompson. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Lv, L., D. Li, D. Zhao, R. Lin, Y. Chu, H. Zhang, Z. Zha, Y. Liu, Z. Li, Y. Xu, G. Wang, Y. Huang, Y. Xiong, K.L. Guan, and Q.Y. Lei. 2011. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Molecular Cell 42: 719–730.

    Article  CAS  PubMed  Google Scholar 

  • Lv, Q., F. Hua, and Z.W. Hu. 2012. DEDD, a novel tumor repressor, reverses epithelial-mesenchymal transition by activating selective autophagy. Autophagy 8: 1675–1676.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macintyre, A.N., and J.C. Rathmell. 2011. PKM2 and the tricky balance of growth and energy in cancer. Molecular Cell 42: 713–714.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathew, R., C.M. Karp, B. Beaudoin, N. Vuong, G. Chen, H.Y. Chen, K. Bray, A. Reddy, G. Bhanot, C. Gelinas, R.S. Dipaola, V. Karantza-Wadsworth, and E. White. 2009. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062–1075.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mihaylova, M.M., and R.J. Shaw. 2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology 13: 1016–1023.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakatogawa, H., K. Suzuki, Y. Kamada, and Y. Ohsumi. 2009. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Reviews Molecular Cell Biology 10: 458–467.

    Article  CAS  PubMed  Google Scholar 

  • Nicklin, P., P. Bergman, B. Zhang, E. Triantafellow, H. Wang, B. Nyfeler, H. Yang, M. Hild, C. Kung, and C. Wilson. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136: 521.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitta, T., Y. Sato, X.S. Ren, K. Harada, M. Sasaki, S. Hirano, and Y. Nakanuma. 2014. Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma. International Journal of Clinical and Experimental Pathology 7: 4913–4921.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peng, Y.F., Y.H. Shi, Z.B. Ding, A.W. Ke, C.Y. Gu, B. Hui, J. Zhou, S.J. Qiu, Z. Dai, and J. Fan. 2013. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9: 2056–2068.

    Article  CAS  PubMed  Google Scholar 

  • Poklepovic, A., and D.A. Gewirtz. 2014. Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer. Autophagy 10: 1478–1480.

    Article  PubMed  Google Scholar 

  • Qiang, L., B. Zhao, M. Ming, N. Wang, T.C. He, S. Hwang, A. Thorburn, and Y.Y. He. 2014. Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proceedings of the National Academy of Sciences of the United States of America 111: 9241–9246.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajagopalan, K.N., and R.J. Deberardinis. 2011. Role of glutamine in cancer: therapeutic and imaging implications. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 52: 1005–1008.

    Article  CAS  Google Scholar 

  • Rangwala, R., Y.C. Chang, J. Hu, K.M. Algazy, T.L. Evans, L.A. Fecher, L.M. Schuchter, D.A. Torigian, J.T. Panosian, A.B. Troxel, K.S. Tan, D.F. Heitjan, A.M. Demichele, D.J. Vaughn, M. Redlinger, A. Alavi, J. Kaiser, L. Pontiggia, L.E. Davis, P.J. O’dwyer, and R.K. Amaravadi. 2014a. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10: 1391–1402.

    Article  PubMed  Google Scholar 

  • Rangwala, R., R. Leone, Y.C. Chang, L.A. Fecher, L.M. Schuchter, A. Kramer, K.S. Tan, D.F. Heitjan, G. Rodgers, M. Gallagher, S. Piao, A.B. Troxel, T.L. Evans, A.M. Demichele, K.L. Nathanson, P.J. O’dwyer, J. Kaiser, L. Pontiggia, L.E. Davis, and R.K. Amaravadi. 2014b. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10: 1369–1379.

    Article  PubMed  Google Scholar 

  • Roberts, D.J., V.P. Tan-Sah, E.Y. Ding, J.M. Smith, and S. Miyamoto. 2014. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Molecular Cell 53: 521–533.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenfeldt, M.T., J. O’prey, J.P. Morton, C. Nixon, G. Mackay, A. Mrowinska, A. Au, T.S. Rai, L. Zheng, and R. Ridgway. 2013. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504: 296–300.

    Article  CAS  PubMed  Google Scholar 

  • Russell, R.C., Y. Tian, H. Yuan, H.W. Park, Y.Y. Chang, J. Kim, H. Kim, T.P. Neufeld, A. Dillin, and K.L. Guan. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell Biology 15: 741–750.

    Article  CAS  PubMed  Google Scholar 

  • Sancak, Y., L. Bar-Peled, R. Zoncu, A.L. Markhard, S. Nada, and D.M. Sabatini. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141: 290–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sancak, Y., T.R. Peterson, Y.D. Shaul, R.A. Lindquist, C.C. Thoreen, L. Bar-Peled, and D.M. Sabatini. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496–1501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaul, Y.D., E. Freinkman, W.C. Comb, J.R. Cantor, W.L. Tam, P. Thiru, D. Kim, N. Kanarek, M.E. Pacold, W.W. Chen, B. Bierie, R. Possemato, F. Reinhardt, R.A. Weinberg, M.B. Yaffe, and D.M. Sabatini. 2014. Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition. Cell 158: 1094–1109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strohecker, A.M., J.Y. Guo, G. Karsli-Uzunbas, S.M. Price, G.J. Chen, R. Mathew, M. Mcmahon, and E. White. 2013. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E–driven lung tumors. Cancer Discovery 3: 1272–1285.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, Y., D. Coppola, N. Matsushita, H.D. Cualing, M. Sun, Y. Sato, C. Liang, J.U. Jung, J.Q. Cheng, J.J. Mule, W.J. Pledger, and H.G. Wang. 2007. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature Cell Biology 9: 1142–1151.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vazquez, F., J.H. Lim, H. Chim, K. Bhalla, G. Girnun, K. Pierce, C.B. Clish, S.R. Granter, H.R. Widlund, B.M. Spiegelman, and P. Puigserver. 2013. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23: 287–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viale, A., P. Pettazzoni, C.A. Lyssiotis, H. Ying, N. Sanchez, M. Marchesini, A. Carugo, T. Green, S. Seth, V. Giuliani, M. Kost-Alimova, F. Muller, S. Colla, L. Nezi, G. Genovese, A.K. Deem, A. Kapoor, W. Yao, E. Brunetto, Y. Kang, M. Yuan, J.M. Asara, Y.A. Wang, T.P. Heffernan, A.C. Kimmelman, H. Wang, J.B. Fleming, L.C. Cantley, R.A. Depinho, and G.F. Draetta. 2014. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628–632.

    Article  CAS  PubMed  Google Scholar 

  • Wan, X.B., X.J. Fan, M.Y. Chen, J. Xiang, P.Y. Huang, L. Guo, X.Y. Wu, J. Xu, Z.J. Long, Y. Zhao, W.H. Zhou, H.Q. Mai, Q. Liu, and M.H. Hong. 2010. Elevated Beclin 1 expression is correlated with HIF-1alpha in predicting poor prognosis of nasopharyngeal carcinoma. Autophagy 6: 395–404.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R.C., Y. Wei, Z. An, Z. Zou, G. Xiao, G. Bhagat, M. White, J. Reichelt, and B. Levine. 2012. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338: 956–959.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward, P.S., and C.B. Thompson. 2012. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21: 297–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wittwer, J.A., D. Robbins, F. Wang, S. Codarin, X. Shen, C.G. Kevil, T.T. Huang, H. Van Remmen, A. Richardson, and Y. Zhao. 2011. Enhancing mitochondrial respiration suppresses tumor promoter TPA-induced PKM2 expression and cell transformation in skin epidermal JB6 cells. Cancer Prevention Research 4: 1476–1484.

    Article  CAS  PubMed  Google Scholar 

  • Wojtkowiak, J.W., J.M. Rothberg, V. Kumar, K.J. Schramm, E. Haller, J.B. Proemsey, M.C. Lloyd, B.F. Sloane, and R.J. Gillies. 2012. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Research 72: 3938–3947.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, Z., J.J. Goronzy, and C.M. Weyand. 2014. The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy 10: 382–383.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., J. Huang, J. Geng, U. Nair, and D.J. Klionsky. 2006. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Molecular Biology of the Cell 17: 5094–5104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yue, Z., S. Jin, C. Yang, A.J. Levine, and N. Heintz. 2003. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America 100: 15077–15082.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhan, Z., X. Xie, H. Cao, X. Zhou, X.D. Zhang, H. Fan, and Z. Liu. 2014. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy 10: 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Zoncu, R., L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, and D.M. Sabatini. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334: 678–683.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (NCC1410960-1) from the National Cancer Center Korea and a grant (NRF-2014R1A1A3054254) from National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heesun Cheong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, H. Integrating autophagy and metabolism in cancer. Arch. Pharm. Res. 38, 358–371 (2015). https://doi.org/10.1007/s12272-015-0562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0562-2

Keywords

Navigation