Abstract
In this report, we investigated the anti-obesity effect of wheat sprouts and their component compounds. Twenty compounds (1–20) were isolated from Triticum aestivum. Among them, glycolipids 1–5 were determined for the first time from T. aestivum and its sprouts. The HPLC analysis demonstrated that compounds 1–3, 5, 8, 12, and 14 were major peak in the HPLC chromatogram of the active fraction. The effects of the compounds on lipid accumulation were assessed at concentrations ranging from 1.0 to 100 μM. At concentration of 10.0 μM, compounds 1–7, 10−15, and 17–19 significantly decreased lipid accumulation in 3T3-L1 preadipocytes. Glycolipids 1, 2, and phenolic 17 significantly reduced lipid accumulation in the differentiated adipocytes in a concentration-dependent manner. Quantitative analysis based on measurement of the optical density of Oil Red O indicated that, at 100 μM, compounds 1, 2, and 17 reduced lipid accumulation by 41, 37, and 48 %, respectively, compared with the positive control.




Similar content being viewed by others
References
Alonso-Castro, A.J., R. Zapata-Bustos, G. Gomez-Espinoza, and L.A. Salazar-Olivo. 2012. Isoorientin reverts TNF-α-induced insulin resistance in adipocytes activating the insulin signaling pathway. Endocrinology 153: 5222–5230.
Batchelor, J.G., R.J. Cushley, and J.H. Prestegard. 1974. Carbon-13 Fourier transform nuclear magnetic resonance. VIII. Role of steric and electric field effects in fatty acid spectra. Journal of Organic Chemistry 39: 1698–1705.
Calzuola, I., V. Marsili, and G.L. Gianfranceschi. 2004. Synthesis of antioxidants in Wheat sprouts. Journal of Agricultural and Food Chemistry 52: 5201–5206.
Deepha, V., R. Praveena, R. Sivakumar, and K. Sadasivam. 2014. Experimental and theoretical investigations on the antioxidant activity of isoorientin from Crotalaria globosa. Spectrochimica Acta Part A 121: 737–745.
Falcioni, G., D. Fedeli, L. Tiano, I. Calzuola, L. Mancinelli, V. Marsili, and G. Gianfranceschi. 2002. Antioxidant activity of wheat sprouts extract in vitro: inhibition of DNA oxidative damage. Journal of Food Science 67: 2918–2922.
George, M., M. Rajaram, and E. Shanmugam. 2014. New and emerging drug molecules against obesity. Journal of Cardiovascular Pharmacology and Therapeutics 19: 65–76.
Ha, T.J., J.H. Lee, S.W. Hwang, J. Lee, N.S. Kang, K.Y. Park, D.Y. Suh, K.H. Park, and M.S. Yang. 2006. Two acylglycerylgalactosides and a new sesquiterpene galactoside from the flowers of Hemisteptia lyrata Bunge. Agricultural Chemistry & Biotechnology 49: 16–20.
Hui, S.P., T. Murai, T. Yoshimura, H. Chiba, and T. Kurosawa. 2003. Simple chemical syntheses of TAG mono-hydroperoxides. Lipids 38: 1287–1292.
Jeong, E.Y., K.S. Cho, and H.S. Lee. 2012. α-amylase and α-glucosidase inhibitors isolated from Triticum aestivum L. sprouts. Journal of the Korean Society for Applied Biological Chemistry 55: 47–51.
Kasturi, R., and V.C. Joshi. 1982. Hormonal regulation of stearoyl coenzyme A desaturase activity and lipogenesis during adipose conversion of 3T3-L1 cells. Journal of Biological Chemistry 257: 12224–12230.
Kuepeli, E., M. Aslan, I. Guerbuez, and E. Yesilada. 2004. Evaluation of in vivo biological activity profile of isoorientin. Zeitschrift fuer Naturforschung, C: Journal of Biosciences 59: 787–790.
Lee, S.H., M. Xin, B.T.T. Luyen, J.Y. Cha, J.Y. Im, S.U. Kwon, S.W. Lim, J.W. Suh, Y.H. Kim, D.K. Kim, and Y.M. Lee. 2011. Inhibitory effect of Triticum aestivum ethanol extract on lipid accumulation in 3T3-L1 preadipocytes. Yakhak Hoechi 55: 478–484.
Lee, Y.M., D.K. Kim, and S.H. Lee. 2013. Composition for treating and preventing obesity, containing wheatgrass extract as active ingredient. WO 2013069934 A1.
Luyen, B.T.T., B.H. Tai, N.P. Thao, J.Y. Cha, Y.M. Lee, and Y.H. Kim. 2014. A new phenolic component from Triticum aestivum sprouts and its effects on LPS-stimulated production of nitric oxide and TNF-α in RAW 264.7 cells. Phytotherapy Research 28: 1064–1070.
Oikawa, A., A. Ishihara, C. Tanaka, N. Mori, M. Tsuda, and H. Iwamura. 2004. Accumulation of HDMBOA-Glc is induced by biotic stresses prior to the release of MBOA in maize leaves. Phytochemistry 65: 2995–3001.
Padwal, R.S., and S.R. Majumdar. 2007. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369: 71–77.
Park, H.J., S.H. Kwon, Y.N. Han, J.W. Choi, K.I. Miyamoto, S.H. Lee, and K.T. Lee. 2001. Apoptosis-inducing costunolide and a novel acyclic monoterpene from the stem bark of Magnolia sieboldii. Archives of Pharmacal Research 24: 342–348.
Peryt, B., T. Szymczyk, and P. Lesca. 1992. Mechanism of antimutagenicity of wheat sprout extracts. Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis 269: 201–215.
Pesarini, J.R., P.T. Zaninetti, M.O. Mauro, C.M. Carreira, J.B. Dichi, L.R. Ribeiro, M.S. Mantovani, and R.J. Oliveira. 2013. Antimutagenic and anticarcinogenic effects of wheat bran in vivo. Genetics and Molecular Research 12: 1646–1659.
Ruberto, G., and C. Tringali. 2004. Secondary metabolites from the leaves of Feijoa sellowiana Berg. Phytochemistry 65: 2947–2951.
Sanderson, M., S.E. Mazibuko, E. Joubert, D. De Beer, R. Johnson, C. Pheiffer, J. Louw, and C.J.F. Muller. 2014. Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation. Phytomedicine 21: 109–117.
Sayin, T., and M. Guldal. 2005. Sibutramine: possible cause of a reversible cardiomyopathy. International Journal of Cardiology 99: 481–482.
Takaya, Y., Y. Kondo, T. Furukawa, and M. Niwa. 2003. Antioxidant constituents of radish sprout (Kaiware-daikon), Raphanus sativus L. Journal of Agricultural and Food Chemistry 51: 8061–8066.
Tuntiwachwuttikul, P., Y. Pootaeng-On, P. Phansa, and W.C. Taylor. 2004. Cerebrosides and a monoacylmonogalactosylglycerol from Clinacanthus nutans. Chemical & Pharmaceutical Bulletin 52: 27–32.
Villareal, D.T., S. Chode, N. Parimi, D.R. Sinacore, T. Hilton, R. Armamento-Villareal, N. Napoli, C. Qualls, and K. Shah. 2011. Weight loss, exercise, or both and physical function in obese older adults. New England Journal of Medicine 364: 1218–1229.
Wegner, C., M. Hamburger, O. Kunert, and E. Haslinger. 2000. Tensioactive compounds from the aquatic plant Ranunculus fluitans L. (Ranunculaceae). Helvetica Chimica Acta 83: 1454–1464.
Yuan, L., X. Ren, Y. Wu, J. Wang, H. Xiao, and X. Liu. 2013. Isoorientin protects BRL-3A rat liver cell against hydrogen peroxide-induced apoptosis by inhibiting mitochondrial dysfunction, inactivating MAPKs, activating Akt and scavenging ROS and NO. Biomedicine & Aging Pathology 3: 153–159.
Yuan, L., Y. Wu, X. Ren, Q. Liu, J. Wang, and X. Liu. 2014. Isoorientin attenuates lipopolysaccharide-induced pro-inflammatory responses through down-regulation of ROS-related MAPK/NF-κB signaling pathway in BV-2 microglia. Molecular and Cellular Biochemistry 386: 153–165.
Acknowledgments
This research was financially supported by the Ministry of Knowledge Economy (MKE), Korea Institute for Advancement of Technology (KIAT) through the Inter-ER Cooperation Projects (R0002019) and the Priority Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2009-0093815), Republic of Korea.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Luyen, B.T.T., Thao, N.P., Tai, B.H. et al. Chemical constituents of Triticum aestivum and their effects on adipogenic differentiation of 3T3-L1 preadipocytes. Arch. Pharm. Res. 38, 1011–1018 (2015). https://doi.org/10.1007/s12272-014-0478-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12272-014-0478-2