Skip to main content
Log in

Cordycepin-enriched WIB801C from Cordyceps militaris inhibits ADP-induced [Ca2+]i mobilization and fibrinogen binding via phosphorylation of IP3R and VASP

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In this study, we investigated the effect of cordycepin-enriched (CE)-WIB801C from Cordyceps militaris on ADP (20 µM)-stimulated platelet aggregation. CE-WIB801C dose-dependently inhibited ADP-induced platelet aggregation, and its IC50 value was 18.5 μg/mL. CE-WIB801C decreased TXA2 production, but did not inhibit the activities of COX-1 and thromboxane synthase (TXAS) in ADP-activated platelets, which suggests that the inhibition of TXA2 production by CE-WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. CE-WIB801C inhibited ATP release and [Ca2+]i mobilization, and increased cAMP level and IP3RI (Ser1756) phosphorylation in ADP-activated platelets. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased CE-WIB801C-inhibited [Ca2+]i mobilization, and strongly inhibited CE-WIB801C-increased IP3RI (Ser1756) phosphorylation. CE-WIB801C elevated the phosphorylation of VASP (Ser157), an A-kinase substrate, but inhibited fibrinogen binding to αIIb/β3. These results suggest that CE-WIB801C-elevated cAMP involved in IP3RI (Ser1756) phosphorylation to inhibit [Ca2+]i mobilization and, VASP (Ser157) phosphorylation to inhibit αIIb/β3 activation. Therefore, in this study, we demonstrate that CE-WIB801C may have a preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barragan, P., J.L. Bouvier, P.O. Roquebert, G. Macaluso, P. Commeau, B. Comet, A. Lafont, L. Camoin, U. Walter, and M. Eigenthaler. 2003. Resistance to thienopyridines: Clinical detection of coronary stent thrombosis by monitoring of vasodilator-stimulated phosphoprotein phosphorylation. Catheterization and Cardiovascular Interventions 59: 295–302.

    Article  PubMed  Google Scholar 

  • Berridge, M.J., and R.F. Irvine. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Butt, E., K. Abel, M. Krieger, D. Palm, V. Hoppe, J. Hoppe, and U. Walter. 1994. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. Journal of Biological Chemistry 269: 14509–14517.

    CAS  PubMed  Google Scholar 

  • Cattaneo, M. 2005. The P2 receptors and congenital platelet function defects. Seminars in Thrombosis and Hemostasis 31: 168–173.

    Article  CAS  PubMed  Google Scholar 

  • Cavallini, L., M. Coassin, A. Borean, and A. Alexandre. 1996. Prostacyclin and sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation. Journal of Biological Chemistry 271: 5545–5551.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H.J., J.Y. Cho, M.H. Rhee, C.R. Lim, and H.J. Park. 2006. Cordycepin (3′-deoxyadenosine) inhibits human platelet aggregation induced by U46619, a TXA2 analogue. Journal of Pharmacy and Pharmacology 58: 1677–1682.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H.J., J.Y. Cho, M.H. Rhee, and H.J. Park. 2007a. Cordycepin (3′-deoxyadenosine) inhibits human platelet aggregation in a cyclic AMP- and cyclic GMP-dependent manner. European Journal of Pharmacology 558: 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H.J., J.Y. Cho, M.H. Rhee, H.S. Kim, H.S. Lee, and H.J. Park. 2007b. Inhibitory effects of cordycepin (3′-deoxyadenosine), a component of Cordyceps militaris, on human platelet aggregation induced by thapsigargin. Journal of Microbiology and Biotechnology 17: 1134–1138.

    CAS  PubMed  Google Scholar 

  • Cho, M.J., J. Liu, T.I. Pestina, S.A. Steward, C.W. Jackson, and T.K. Gartner. 2003. AlphaIIbbeta3-mediated outside-in signaling induced by the agonist peptide LSARLAF utilizes ADP and thromboxane A2 receptors to cause alpha-granule secretion by platelets. Journal of Thrombosis and Haemostasis 1: 363–373.

    Article  CAS  PubMed  Google Scholar 

  • Cipollone, F., P. Patrignani, A. Greco, M.R. Panara, R. Padovano, F. Cuccurullo, C. Patrono, A.G. Rebuzzi, G. Liuzzo, G. Quaranta, and A. Maseri. 1997. Differential suppression of thromboxane biosynthesis by indobufen and aspirin in patients with unstable angina. Circulation 6: 1109–1116.

    Article  Google Scholar 

  • Cohen, S., A. Braiman, G. Shubinsky, and N. Isakov. 2011. Protein kinase C-theta in platelet activation. FEBS Letters 585: 3208–3215.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, K.G., S.A. Hutchinson, W. Manson, and F.S. Spring. 1951. Cordycepin: A metabolic product from cultures Cordyceps militaris Link. Part I. Isolation and characterization. Journal of Chemical Society 2: 2299–2300.

    Article  Google Scholar 

  • Gachet, C., and B. Hechler. 2005. The platelet P2 receptors in thrombosis. Seminars in Thrombosis and Hemostasis 31: 162–167.

    Article  CAS  PubMed  Google Scholar 

  • Gambaryan, S., A. Kobsar, N. Rukoyatkina, S. Herterich, J. Geiger, A. Smolenski, S.M. Lohmann, and U. Walter. 2010. Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFkappaB-IkappaB complex. Journal of Biological Chemistry 285: 18352–18363.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guidetti, G.F., P. Lova, B. Bernardi, F. Campus, G. Baldanzi, A. Graziani, C. Balduini, and M. Torti. 2008. The Gi-coupled P2Y12 receptor regulates diacylglycerol-mediated signaling in human platelets. Journal of Biological Chemistry 283: 28795–28805.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halbrügge, M., and U. Walter. 1989. Purification of a vasodilator-regulated phosphoprotein from human platelets. European Journal of Biochemistry 185: 41–50.

    Article  PubMed  Google Scholar 

  • Halbrügge, M., C. Friedrich, M. Eigenthaler, P. Schanzenbächer, and U. Walter. 1990. Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. Journal of Biological Chemistry 265: 3088–3093.

    PubMed  Google Scholar 

  • Haslam, R.J., M.M. Davidson, and J.V. Desjardins. 1978. Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets. Evidence for the unidirectional control of platelet function by cyclic AMP. Biochemical Journal 176: 83–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hauser, W., K.P. Knobeloch, M. Eigenthaler, S. Gambaryan, V. Krenn, J. Geiger, M. Glazova, E. Rohde, I. Horak, U. Walter, and M. Zimmer. 1999. Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proceedings of the National Academy of Sciences of the United States of America 96: 8120–8125.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hechler, B., and C. Gachet. 2011. P2 receptors and platelet function. Purinergic Signaling 7: 293–303.

    Article  CAS  Google Scholar 

  • Horstrup, K., B. Jablonka, P. Hönig-Liedl, M. Just, K. Kochsiek, and U. Walter. 1994. Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. European Journal of Biochemistry 225: 21–27.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L.F., Y.Z. Liang, F.Q. Guo, Z.F. Zhou, and B.M. Cheng. 2003. Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militarris by LC/ESI-MS. Journal of Pharmaceutical and Biomedical Analysis 33: 1155–1162.

    Article  CAS  PubMed  Google Scholar 

  • Jang, E.K., J.E. Azzam, N.T. Dickinson, M.M. Davidson, and R.J. Haslam. 2002. Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced platelet aggregation by nitroprusside. British Journal of Haematology 117: 664–675.

    Article  CAS  PubMed  Google Scholar 

  • Jennings, L.K. 2009. Role of platelets in atherothrombosis. American Journal of Cardiology 103: 4A–10A.

    Article  CAS  PubMed  Google Scholar 

  • Johnston-Cox, H.A., and K. Ravid. 2011. Adenosine and blood platelets. Purinergic Signaling 7: 357–365.

    Article  CAS  Google Scholar 

  • Kahner, B.N., H. Shankar, S. Murugappan, G.L. Prasad, and S.P. Kunapuli. 2006. Nucleotide receptor signaling in platelets. Journal of Thrombosis and Haemostasis 4: 2317–2326.

    Article  CAS  PubMed  Google Scholar 

  • Kaibuchi, K., K. Sano, M. Hoshijima, Y. Takai, and Y. Nishizuka. 1982. Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium 3: 323–335.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, V., T.P. Loisel, B. Harbeck, A. Wehman, L. Gröbe, B.M. Jockusch, J. Wehland, F.B. Gertler, and M.F. Carlier. 1999. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. Journal of Cell Biology 144: 1245–1258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Londos, C., and J. Wolff. 1977. Two distinct adenosine-sensitive sites on adenylate cyclase. Proceedings of the National Academy of Sciences of the United States of America 74: 5482–5486.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mackman, N. 2008. Triggers, targets and treatments for thrombosis. Nature 451: 914–918.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menshikov, MYu., K. Ivanova, M. Schaefer, C. Drummer, and R. Gerzer. 1993. Influence of the cGMP analog 8-PCPT-cGMP on agonist-induced increases in cytosolic ionized Ca2+ and on aggregation of human platelets. European Journal Pharmacology 245: 281–284.

    Article  CAS  Google Scholar 

  • Ng, T.B., and H.X. Wang. 2005. Pharmacological actions of Cordyceps, a prized folk medicine. Journal of Pharmacy and Pharmacology 57: 1509–1519.

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa, M., T. Tanaka, and H. Hidaka. 1980. Ca2+-calmodulin-dependent phosphorylation and platelet secretion. Nature 287: 863–865.

    Article  CAS  PubMed  Google Scholar 

  • Packham, M.A., and J.F. Mustard. 2005. Platelet aggregation and adenosine diphosphate/adenosine triphosphate receptors: A historical perspective. Seminars in Thrombosis and Hemostasis 31: 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Patrono, C. 1994. Aspirin as an antiplatelet drug. New England Journal of Medicine 330: 1287–1294.

    Article  CAS  PubMed  Google Scholar 

  • Quinton, T.M., and W.L. Dean. 1992. Cyclic AMP-dependent phosphorylation of the inositol-1,4,5-trisphosphate receptor inhibits Ca2+ release from platelet membranes. Biochemical and Biophys. Res. Commun. 184: 893–899.

    Article  CAS  Google Scholar 

  • Schaeffer, J., and M.P. Blaustein. 1989. Platelet free calcium concentrations measured with fura-2 are influenced by the transmembrane sodium gradient. Cell Calcium 10: 101–113.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, S.M., R.L. Heimark, and M.W. Majesky. 1990. Developmental mechanisms underlying pathology of arteries. Physiological Reviews 70: 1177–1209.

    CAS  PubMed  Google Scholar 

  • Schwarz, U.R., U. Walter, and M. Eigenthaler. 2001. Taming platelets with cyclic nucleotides. Biochemical Pharmacology 62: 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  • Smolenski, A., C. Bachmann, K. Reinhard, P. Hönig-Liedl, T. Jarchau, H. Hoschuetzky, and U. Walter. 1998. Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. Journal of Biological Chemistry 273: 20029–20035.

    Article  CAS  PubMed  Google Scholar 

  • Sudo, T., H. Ito, and Y. Kimura. 2003. Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets. Platelets 14: 381–390.

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi, A., A. Yoshioka, T. Higashi, R. Shirakawa, H. Nishioka, T. Kita, and H. Horiuchi. 2003. Direct demonstration of involvement of protein kinase Calpha in the Ca2+-induced platelet aggregation. Journal of Biological Chemistry 278: 26374–26379.

    Article  CAS  PubMed  Google Scholar 

  • van Willigen, G., and J.W. Akkerman. 1991. Protein kinase C and cyclic AMP regulate reversible exposure of binding sites for fibrinogen on the glycoprotein IIB-IIIA complex of human platelets. Biochemical Journal 273: 115–120.

    PubMed Central  PubMed  Google Scholar 

  • Walter, U., and S. Gambaryan. 2009. cGMP and cGMP-dependent protein kinase in platelets and blood cells. Handbook of Experimental Pharmacology 191: 533–548.

    Article  CAS  PubMed  Google Scholar 

  • Yue, G.G., C.B. Lau, K.P. Fung, P.C. Leung, and W.H. Ko. 2008. Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. Journal of Ethnopharmacology 117: 92–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant (NRF-2011-0012143 to Hwa-Jin Park) from Basic Science Research Program via the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology, Korea.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Jin Park.

Additional information

Dong-Ha Lee, Hyuk-Woo Kwon, and Hyun-Hong Kim have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DH., Kwon, HW., Kim, HH. et al. Cordycepin-enriched WIB801C from Cordyceps militaris inhibits ADP-induced [Ca2+]i mobilization and fibrinogen binding via phosphorylation of IP3R and VASP. Arch. Pharm. Res. 38, 81–97 (2015). https://doi.org/10.1007/s12272-014-0436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0436-z

Keywords

Navigation