Skip to main content
Log in

The role of neuronal nitric oxide synthase on hypobaric hypoxiainduced antinociception in writhing test

  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

It has been reported that hypobaric hypoxia exposure by high altitude is responsible for neuropsychological impairment. In the present study, we examined an effect of hypobaric hypoxia on the writhing test. The ICR mice were exposed in hypobaric chamber with several altitudes (5000, 10,000 or 20,000 ft) for 1 or 2 h, and then immediately injected intraperitoneally (i.p.) with 1% acetic acid for writhing test. Our results show that both 10,000 ft and 20,000 ft exposure induce antinociceptive effect in writhing test, but 5,000 ft does not. In addition, this antinociceptive effect was abolished by L-NAME (nitric oxide synthase inhibitor) pre-treated intraperitoneally, but not naloxone (non-specific opioid receptor antagonist). Furthermore, we examined that neuronal NOS immunoreactivities in the hypothalamus (paraventricular nucleus and arcuate nucleus) were increased by hypobaric hypoxic exposure (10,000ft). These results suggest that hypobaric hypoxic-induced antinociception may be associated with neuronal NOS IR in the hypothalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aimone, L. D. and Gebhart, G. F. Serotonin and/or an excitatory amino acid in the medial medulla mediates stimulation-produced antinociception from the lateral hypothalamus in the rat. Brain Res., 450, 170–180 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Aimone, L. D., Jones, S. L., and Gebhart, G. F., Stimulationproduced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Pain, 31, 123–136 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Aley, K. O., Mccarter, G., and Levine, J. D., Nitric oxide signaling in pain and nociceptor sensitization in the rat. J. Neurosci., 18, 7008–7014 (1998).

    CAS  PubMed  Google Scholar 

  • Basnyat, B. and Murdoch, D. R., High-altitude illness. Lancet, 361, 1967–1974 (2003).

    Article  PubMed  Google Scholar 

  • Bernstein, H. G., Keilhoff, G., Seidel, B., Stanarius, A., Huang, P. L., Fishman, M. C., Reiser, M., Bogerts, B., and Wolf, G., Expression of hypothalamic peptides in mice lacking neuronal nitric oxide synthase: reduced beta-END immunoreactivity in the arcuate nucleus. Neuroendocrinology, 68, 403–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Bohus, B., Benus, R. F., Fokkema, D. S., Koolhaas, J. M., Nyakas, C., Van Oortmerssen, G. A., Prins, A. J., De Ruiter, A. J., Scheurink, A. J., and Steffens, A. B., Neuroendocrine states and behavioral and physiological stress responses. Prog. Brain Res., 72, 57–70 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Burstein, R., Falkowsky, O., Borsook, D., and Strassman, A., Distinct lateral and medial projections of the spinohypothalamic tract of the rat. J. Comp. Neurol., 373, 549–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Chalimoniuk, M., Glod, B., and Strosznajder, J., NMDA receptor mediated nitric oxide dependent cGMP synthesis in brain cortex and hippocampus. Effect of ischemia on NO related biochemical processes during reperfusion. Neurol. Neurochir. Pol., 30Suppl. 2, 65–84 (1996).

    PubMed  Google Scholar 

  • Chung, E., Burke, B., Bieber, A. J., Doss, J. C., Ohgami, Y., and Quock, R. M., Dynorphin-mediated antinociceptive effects of L-arginine and SIN-1 (an NO donor) in mice. Brain Res. Bull., 70, 245–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Cope, J. L., Chung, E., Ohgami, Y., and Quock, R. M., Antagonism of the antinociceptive effect of nitrous oxide by inhibition of enzyme activity or expression of neuronal nitric oxide synthase in the mouse brain and spinal cord. Eur. J. Pharmacol., 626, 234–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  • De Boer, S. F., Van Der Gugten, J., and Slangen, J. L., Plasma catecholamine and corticosterone responses to predictable and unpredictable noise stress in rats. Physiol. Behav., 45, 789–795 (1989).

    Article  PubMed  Google Scholar 

  • Ferreira, S. H., Lorenzetti, B. B., and Faccioli, L. H., Blockade of hyperalgesia and neurogenic oedema by topical application of nitroglycerin. Eur. J. Pharmacol., 217, 207–209 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Franklin Kbj, P. G., The mouse brain in stereotaxic coordinates, Academic Press, San Diego (1997).

    Google Scholar 

  • Garthwaite, J., Garthwaite, G., Palmer, R. M., and Moncada, S., NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur. J. Pharmacol., 172, 413–416 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Hammond, D., Inference of pain and its modulation from simple behaviors, In Issues in Pain Measurement: Advances in Pain Research and Therapy, Raven Press, New York (1989).

    Google Scholar 

  • Hohmann, A. G., Suplita, R. L., Bolton, N. M., Neely, M. H., Fegley, D., Mangieri, R., Krey, J. F., Walker, J. M., Holmes, P. V., Crystal, J. D., Duranti, A., Tontini, A., Mor, M., Tarzia, G., and Piomelli, D., An endocannabinoid mechanism for stress-induced analgesia. Nature, 435, 1108–1112 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, T., Mishima, K., Yoshikawa, T., Iwasaki, K., Fujiwara, M., Xia, Y. X., and Ikenoue, T., Selective and long-term learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav. Brain Res., 118, 17–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Keay, K. A. and Bandler, R., Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci. Biobehav. Rev., 25, 669–678 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Koster, R., Anderson, M., and De Beer, E. J., Acetic acid for analgesic screening. Fed. Proc., 18, 412 (1959).

    Google Scholar 

  • Kwon, M. S., Seo, Y. J., Shim, E. J., Lee, J. K., Jang, J. E., Park, S. H., Jung, J. S., and Suh, H. W., The differential effects of emotional or physical stress on pain behaviors or on c-Fos immunoreactivity in paraventricular nucleus or arcuate nucleus. Brain Res., 1190, 122–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Le Bars, D., Gozariu, M., and Cadden, S. W., Animal models of nociception. Pharmacol. Rev., 53, 597–652 (2001).

    PubMed  Google Scholar 

  • Maiti, P., Singh, S. B., Muthuraju, S., Veleri, S., and Ilavazhagan, G., Hypobaric hypoxia damages the hippocampal pyramidal neurons in the rat brain. Brain Res., 1175, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Maiti, P., Singh, S. B., Mallick, B., Muthuraju, S., and Ilavazhagan, G., High altitude memory impairment is due to neuronal apoptosis in hippocampus, cortex and striatum. J. Chem. Neuroanat., 36, 227–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Mason, J. W., A review of psychoendocrine research on the pituitary-adrenal cortical system. Psychosom. Med., 30,Suppl:576–607 (1968).

    PubMed  Google Scholar 

  • Meller, S. T. and Gebhart, G. F., Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain, 52, 127–136 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Millan, M. J., Multiple opioid systems and pain. Pain, 27, 303–347 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Millan, M. J., Descending control of pain. Prog. Neurobiol., 66, 355–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rees, D. D., Palmer, R. M., Schulz, R., Hodson, H. F., and Moncada, S., Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol., 101, 746–752 (1990).

    CAS  PubMed  Google Scholar 

  • Row, B. W., Liu, R., Xu, W., Kheirandish, L., and Gozal, D., Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am. J. Respir. Crit. Care Med., 167, 1548–1553 (2003).

    Article  PubMed  Google Scholar 

  • Rubinstein, M., Mogil, J. S., Japon, M., Chan, E. C., Allen, R.G., and Low, M. J., Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis. Proc. Natl. Acad. Sci. U. S. A., 93, 3995–4000 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Sampson, J. B., Cymerman, A., Burse, R. L., Maher, J. T., and Rock, P. B., Procedures for the measurement of acute mountain sickness. Aviat. Space Environ. Med., 54, 1063–1073 (1983).

    CAS  PubMed  Google Scholar 

  • Seo, Y. J., Kwon, M. S., Shim, E. J., Park, S. H., Choi, O. S., and Suh, H. W., Changes in pain behavior induced by formalin, substance P, glutamate and pro-inflammatory cytokines in immobilization-induced stress mouse model. Brain Res. Bull., 71, 279–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Shim, E. J., Seo, Y. J., Kwon, M. S., Ham, Y. O., Choi, O. S., Lee, J. Y., Choi, S. M., and Suh, H. W., The intracerebroventricular kainic acid-induced damage affects animal nociceptive behavior. Brain Res. Bull., 73, 203–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Simonova, Z., Sterbova, K., Brozek, G., Komarek, V., and Sykova, E., Postnatal hypobaric hypoxia in rats impairs water maze learning and the morphology of neurones and macroglia in cortex and hippocampus. Behav. Brain Res., 141, 195–205 (2003).

    Article  PubMed  Google Scholar 

  • Tseng, L. F., Evidence for epsilon-opioid receptor-mediated beta-endorphin-induced analgesia. Trends Pharmacol. Sci., 22, 623–630 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg, C. L., Lamberts, R. R., Wolterink, G., Wiegant, V. M., and Van Ree, J. M., Emotional and footshock stimuli induce differential long-lasting behavioural effects in rats; involvement of opioids. Brain Res., 799, 6–15 (1998).

    Article  PubMed  Google Scholar 

  • Viu, E., Zapata, A., Capdevila, J., Skolnick, P., and Trullas, R., Glycine(B) receptor antagonists and partial agonists prevent memory deficits in inhibitory avoidance learning. Neurobiol. Learn. Mem., 74, 146–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Vyklicky, L., Techniques for the study of pain in animals in Advances in Pain Research and Therapy New York, Raven Press, New York (1979).

    Google Scholar 

  • Wu, T., Ding, S., Liu, J., Jia, J., Dai, R., Liang, B., Zhao, J., and Qi, D., Ataxia: an early indicator in high altitude cerebral edema. High Alt. Med. Biol., 7, 275–280 (2006).

    Article  PubMed  Google Scholar 

  • Xu, J. Y., Pieper, G. M., and Tseng, L. F., Activation of a NOcyclic GMP system by NO donors potentiates betaendorphin-induced antinociception in the mouse. Pain, 63, 377–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Zakarian, S. and Smyth, D. G., Distribution of beta-endorphin-related peptides in rat pituitary and brain. Biochem. J., 202, 561–571 (1982).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Soo Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, SM., Chung, SY., Seol, CA. et al. The role of neuronal nitric oxide synthase on hypobaric hypoxiainduced antinociception in writhing test. Arch. Pharm. Res. 33, 1103–1110 (2010). https://doi.org/10.1007/s12272-010-0717-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0717-0

Key words

Navigation