Skip to main content

Advertisement

Log in

Myocardial Metabolic Reprogramming in HFpEF

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Heart failure (HF) caused by structural or functional cardiac abnormalities is a significant cause of morbidity and mortality worldwide. While HF with reduced ejection fraction (HErEF) is well understood, more than half of patients have HF with preserved ejection fraction (HFpEF). Currently, the treatment for HFpEF primarily focuses on symptom alleviation, lacking specific drugs. The stressed heart undergoes metabolic switches in substrate preference, which is a compensatory process involved in cardiac pathological remodeling. Although metabolic reprogramming in HF has gained attention in recent years, its role in HFpEF still requires further elucidation. In this review, we present a summary of cardiac mitochondrial dysfunction and cardiac metabolic reprogramming in HFpEF. Additionally, we emphasize potential therapeutic approaches that target metabolic reprogramming for the treatment of HFpEF.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data used are available from the corresponding author on reasonable request.

Abbreviations

AMPK:

Adenosine monophosphate-activated protein kinase

BCAA:

Branched chain amino acids

cGMP:

Cyclic GMP

EAT:

Epicardial adipose tissue

ECs:

Endothelial cells

EF:

Ejection fraction

ETC:

Electron transport chain

FA:

Fatty acids

FAP:

Fibroblast activation protein

FXI:

Factor XI

HErEF:

HF with reduced EF

HF:

Heart failure

HFpEF:

HF with preserved EF

iNOS:

Inducible nitric oxide synthase

IRE1α:

Inositol-requiring protein 1α

LDLR:

Low-density lipoprotein receptor

NAD+:

Nicotinamide adenine dinucleotide

NAM:

Nicotinamide

NO:

Nitric oxide

OXPHOS:

Oxidative phosphorylation

PCSK9:

Proprotein convertase subtilisin/kexin type 9

PH-HFpEF:

Pulmonary hypertension associated with HFpEF

PKG:

Protein kinase G

ROS:

Reactive oxygen species

SAUNA:

Salty drinking water/unilateral nephrectomy/aldosterone

sGC:

Soluble guanylate cyclase

SGLT2:

Sodium-dependent glucose transporters 2

SIRT3:

Sirtuin 3

T2D:

Type 2 diabetes

XBP1:

X-box binding protein 1

ZSF1:

Zucker/fatty spontaneously hypertensive F1 hybrid

References

  1. Metra M, Teerlink JR. Heart failure. Lancet. 2017; https://doi.org/10.1016/s0140-6736(17)31071-1.

  2. Wu A. Heart Failure. Ann Intern Med. 2018; https://doi.org/10.7326/aitc201806050.

  3. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017; https://doi.org/10.1038/nrcardio.2017.65.

  4. Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res. 2017; https://doi.org/10.1093/cvr/cvx017.

  5. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005; https://doi.org/10.1152/physrev.00006.2004.

  6. Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007; https://doi.org/10.1056/NEJMra063052.

  7. De Jong KA, Lopaschuk GD. Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Can J Cardiol. 2017; https://doi.org/10.1016/j.cjca.2017.03.009.

  8. Del Campo A, Perez G, Castro PF, Parra V, Verdejo HE. Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF. Biochim Biophys Acta Mol Basis Dis. 2021; https://doi.org/10.1016/j.bbadis.2021.166208.

  9. Chaanine AH, Joyce LD, Stulak JM, Maltais S, Joyce DL, Dearani JA, et al. Mitochondrial morphology, dynamics, and function in human pressure overload or ischemic heart disease with preserved or reduced ejection fraction. Circ Heart Fail. 2019; https://doi.org/10.1161/circheartfailure.118.005131.

  10. Bode D, Wen Y, Hegemann N, Primessnig U, Parwani A, Boldt LH, et al. Oxidative stress and inflammatory modulation of Ca(2+) handling in metabolic HFpEF-related left atrial cardiomyopathy. Antioxidants (Basel). 2020; https://doi.org/10.3390/antiox9090860.

  11. Shou J, Huo Y. PINK1 phosphorylates Drp1(S616) to improve mitochondrial fission and inhibit the progression of hypertension-induced HFpEF. Int J Mol Sci. 2022; https://doi.org/10.3390/ijms231911934.

  12. Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013; https://doi.org/10.1161/circresaha.113.302095.

  13. Lozhkin A, Vendrov AE, Ramos-Mondragón R, Canugovi C, Stevenson MD, Herron TJ, et al. Mitochondrial oxidative stress contributes to diastolic dysfunction through impaired mitochondrial dynamics. Redox Biol. 2022; https://doi.org/10.1016/j.redox.2022.102474.

  14. Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ Res. 2021; https://doi.org/10.1161/circresaha.120.317933.

  15. Miranda-Silva D, Wüst RCI, Conceição G, Gonçalves-Rodrigues P, Gonçalves N, Gonçalves A, et al. Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. Acta Physiol (Oxf). 2020; https://doi.org/10.1111/apha.13378.

  16. van Bilsen M, van Nieuwenhoven FA, van der Vusse GJ. Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc Res. 2009; https://doi.org/10.1093/cvr/cvn282.

  17. Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol. 2018; https://doi.org/10.1038/s41569-018-0044-6.

  18. Cardoso AC, Lam NT, Savla JJ, Nakada Y, Pereira AHM, Elnwasany A, et al. Mitochondrial substrate utilization regulates cardiomyocyte cell cycle progression. Nat Metab. 2020;2:167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014; https://doi.org/10.1016/j.cell.2014.03.032.

  20. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015; https://doi.org/10.1161/circulationaha.114.010637.

  21. Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute. Circulation. 2009; https://doi.org/10.1161/circulationaha.108.815944.

  22. Cohen JB, Schrauben SJ, Zhao L, Basso MD, Cvijic ME, Li Z, et al. Clinical phenogroups in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to spironolactone. JACC Heart Fail. 2020; https://doi.org/10.1016/j.jchf.2019.09.009.

  23. van Riet EE, Hoes AW, Wagenaar KP, Limburg A, Landman MA, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016; https://doi.org/10.1002/ejhf.483.

  24. Gladden JD, Linke WA, Redfield MM. Heart failure with preserved ejection fraction. Pflugers Arch. 2014; https://doi.org/10.1007/s00424-014-1480-8.

  25. Redfield MM. Heart failure with preserved ejection fraction. N Engl J Med. 2016; https://doi.org/10.1056/NEJMcp1511175.

  26. Chan MM, Lam CS. How do patients with heart failure with preserved ejection fraction die? Eur J Heart Fail. 2013; https://doi.org/10.1093/eurjhf/hft062.

  27. Borlaug BA, Redfield MM. Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation. 2011; https://doi.org/10.1161/circulationaha.110.954388.

  28. Heather LC, Cole MA, Lygate CA, Evans RD, Stuckey DJ, Murray AJ, et al. Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovasc Res. 2006; https://doi.org/10.1016/j.cardiores.2006.08.020.

  29. Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR, et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation. 2002; https://doi.org/10.1161/01.cir.0000023531.22727.c1.

  30. Lai L, Leone TC, Keller MP, Martin OJ, Broman AT, Nigro J, et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Fail. 2014; https://doi.org/10.1161/circheartfailure.114.001469.

  31. Dávila-Román VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002; https://doi.org/10.1016/s0735-1097(02)01967-8.

  32. Tuunanen H, Engblom E, Naum A, Någren K, Hesse B, Airaksinen KE, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006; https://doi.org/10.1161/circulationaha.106.645184.

  33. Neglia D, De Caterina A, Marraccini P, Natali A, Ciardetti M, Vecoli C, et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2007; https://doi.org/10.1152/ajpheart.00887.2007.

  34. Kato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail. 2010; https://doi.org/10.1161/circheartfailure.109.888479.

  35. Zhabyeyev P, Gandhi M, Mori J, Basu R, Kassiri Z, Clanachan A, et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res. 2013; https://doi.org/10.1093/cvr/cvs424.

  36. Hahn VS, Petucci C, Kim MS, Bedi KC Jr, Wang H, Mishra S, et al. Myocardial metabolomics of human heart failure with preserved ejection fraction. Circulation. 2023; https://doi.org/10.1161/circulationaha.122.061846.

  37. Fillmore N, Levasseur JL, Fukushima A, Wagg CS, Wang W, Dyck JRB, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med. 2018; https://doi.org/10.1186/s10020-018-0005-x.

  38. Brandt MM, Nguyen ITN, Krebber MM, van de Wouw J, Mokry M, Cramer MJ, et al. Limited synergy of obesity and hypertension, prevalent risk factors in onset and progression of heart failure with preserved ejection fraction. J Cell Mol Med. 2019; https://doi.org/10.1111/jcmm.14542.

  39. Valero-Muñoz M, Saw EL, Hekman RM, Blum BC, Hourani Z, Granzier H, et al. Proteomic and phosphoproteomic profiling in heart failure with preserved ejection fraction (HFpEF). Front Cardiovasc Med. 2022; https://doi.org/10.3389/fcvm.2022.966968.

  40. Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004; https://doi.org/10.1161/01.Cir.0000127959.28627.F8.

  41. Peterson LR, Soto PF, Herrero P, Mohammed BS, Avidan MS, Schechtman KB, et al. Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc Imaging. 2008; https://doi.org/10.1016/j.jcmg.2008.05.004.

  42. Peterson LR, Herrero P, Coggan AR, Kisrieva-Ware Z, Saeed I, Dence C, et al. Type 2 diabetes, obesity, and sex difference affect the fate of glucose in the human heart. Am J Physiol Heart Circ Physiol. 2015; https://doi.org/10.1152/ajpheart.00722.2014.

  43. Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res. 1997; https://doi.org/10.1016/s0008-6363(97)00047-3.

  44. Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C, et al. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006; https://doi.org/10.1016/j.jacc.2005.09.030.

  45. Borlaug BA, Jensen MD, Kitzman DW, Lam CSP, Obokata M, Rider OJ. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets. Cardiovasc Res. 2023; https://doi.org/10.1093/cvr/cvac120.

  46. Hubesch G, Hanthazi A, Acheampong A, Chomette L, Lasolle H, Hupkens E, et al. A preclinical rat model of heart failure with preserved ejection fraction with multiple comorbidities. Front Cardiovasc Med. 2021; https://doi.org/10.3389/fcvm.2021.809885.

  47. Mori J, Basu R, McLean BA, Das SK, Zhang L, Patel VB, et al. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail. 2012; https://doi.org/10.1161/circheartfailure.112.966705.

  48. Degens H, de Brouwer KF, Gilde AJ, Lindhout M, Willemsen PH, Janssen BJ, et al. Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res Cardiol. 2006; https://doi.org/10.1007/s00395-005-0549-0.

  49. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ Res. 2021; https://doi.org/10.1161/circresaha.121.318241.

  50. Ng ACT, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021; https://doi.org/10.1038/s41569-020-00465-5.

  51. Korvald C, Elvenes OP, Myrmel T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol. 2000; https://doi.org/10.1152/ajpheart.2000.278.4.H1345.

  52. Gibb AA, Murray EK, Eaton DM, Huynh AT, Tomar D, Garbincius JF, et al. Molecular signature of HFpEF: systems biology in a cardiac-centric large animal model. JACC Basic Transl Sci. 2021; https://doi.org/10.1016/j.jacbts.2021.07.004.

  53. Funada J, Betts TR, Hodson L, Humphreys SM, Timperley J, Frayn KN, et al. Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling. PLoS One. 2009; https://doi.org/10.1371/journal.pone.0007533.

  54. Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016; https://doi.org/10.1161/circulationaha.115.017355.

  55. Zordoky BN, Sung MM, Ezekowitz J, Mandal R, Han B, Bjorndahl TC, et al. Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS One. 2015; https://doi.org/10.1371/journal.pone.0124844.

  56. Sun H, Wang Y. Branched chain amino acid metabolic reprogramming in heart failure. Biochim Biophys Acta. 2016; https://doi.org/10.1016/j.bbadis.2016.09.009.

  57. Murashige D, Jung JW, Neinast MD, Levin MG, Chu Q, Lambert JP, et al. Extra-cardiac BCAA catabolism lowers blood pressure and protects from heart failure. Cell Metab. 2022; https://doi.org/10.1016/j.cmet.2022.09.008.

  58. Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, et al. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res. 2023; https://doi.org/10.1093/cvr/cvac166.

  59. Opie LH, Knuuti J. The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol. 2009; https://doi.org/10.1016/j.jacc.2009.07.024.

  60. Wende AR, Abel ED. Lipotoxicity in the heart. Biochim Biophys Acta. 2010; https://doi.org/10.1016/j.bbalip.2009.09.023.

  61. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012; https://doi.org/10.1016/j.cmet.2012.04.006.

  62. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016; https://doi.org/10.1161/circulationaha.116.021884.

  63. Schiattarella GG, Altamirano F, Kim SY, Tong D, Ferdous A, Piristine H, et al. Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nat Commun. 2021; https://doi.org/10.1038/s41467-021-21931-9.

  64. Norata GD, Tavori H, Pirillo A, Fazio S, Catapano AL. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res. 2016; https://doi.org/10.1093/cvr/cvw194.

  65. Poirier S, Mayer G, Benjannet S, Bergeron E, Marcinkiewicz J, Nassoury N, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008; https://doi.org/10.1074/jbc.M708098200.

  66. Demers A, Samami S, Lauzier B, Des Rosiers C, Ngo Sock ET, Ong H, et al. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler Thromb Vasc Biol. 2015; https://doi.org/10.1161/atvbaha.115.306032.

  67. Da Dalt L, Castiglioni L, Baragetti A, Audano M, Svecla M, Bonacina F, et al. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction. Eur Heart J. 2021; https://doi.org/10.1093/eurheartj/ehab431.

  68. Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017; https://doi.org/10.1016/j.cmet.2016.12.022.

  69. Koser F, Hobbach AJ, Abdellatif M, Herbst V, Türk C, Reinecke H, et al. Acetylation and phosphorylation changes to cardiac proteins in experimental HFpEF due to metabolic risk reveal targets for treatment. Life Sci. 2022; https://doi.org/10.1016/j.lfs.2022.120998.

  70. Matasic DS, Brenner C, London B. Emerging potential benefits of modulating NAD(+) metabolism in cardiovascular disease. Am J Physiol Heart Circ Physiol. 2018; https://doi.org/10.1152/ajpheart.00409.2017.

  71. Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Protein acetylation in metabolism - metabolites and cofactors. Nat Rev Endocrinol. 2016; https://doi.org/10.1038/nrendo.2015.181.

  72. Tong D, Schiattarella GG, Jiang N, Altamirano F, Szweda PA, Elnwasany A, et al. NAD(+) repletion reverses heart failure with preserved ejection fraction. Circ Res. 2021; https://doi.org/10.1161/circresaha.120.317046.

  73. Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, et al. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension. 2004; https://doi.org/10.1161/01.HYP.0000144292.69599.0c.

  74. Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M, Ito S, et al. Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation. 2009; https://doi.org/10.1161/circulationaha.108.798561.

  75. Kim TT, Dyck JR. Is AMPK the savior of the failing heart? Trends Endocrinol Metab. 2015; https://doi.org/10.1016/j.tem.2014.11.001.

  76. Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res. 2009; https://doi.org/10.1093/cvr/cvn301.

  77. Kitzman DW, Lam CSP. Obese heart failure with preserved ejection fraction phenotype: from pariah to central player. Circulation. 2017; https://doi.org/10.1161/circulationaha.117.028365.

  78. Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail. 2011; https://doi.org/10.1161/circheartfailure.109.931451.

  79. Sanders-van Wijk S, van Empel V, Davarzani N, Maeder MT, Handschin R, Pfisterer ME, et al. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail. 2015; https://doi.org/10.1002/ejhf.414.

  80. DuBrock HM, AbouEzzeddine OF, Redfield MM. High-sensitivity C-reactive protein in heart failure with preserved ejection fraction. PLoS One. 2018; https://doi.org/10.1371/journal.pone.0201836.

  81. Cheng JM, Akkerhuis KM, Battes LC, van Vark LC, Hillege HL, Paulus WJ, et al. Biomarkers of heart failure with normal ejection fraction: a systematic review. Eur J Heart Fail. 2013; https://doi.org/10.1093/eurjhf/hft106.

  82. Matsubara J, Sugiyama S, Nozaki T, Sugamura K, Konishi M, Ohba K, et al. Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction. J Am Coll Cardiol. 2011; https://doi.org/10.1016/j.jacc.2010.10.018.

  83. McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014; https://doi.org/10.1016/j.immuni.2014.05.010.

  84. Hulsmans M, Sager HB, Roh JD, Valero-Muñoz M, Houstis NE, Iwamoto Y, et al. Cardiac macrophages promote diastolic dysfunction. J Exp Med. 2018; https://doi.org/10.1084/jem.20171274.

  85. Glezeva N, Voon V, Watson C, Horgan S, McDonald K, Ledwidge M, et al. Exaggerated inflammation and monocytosis associate with diastolic dysfunction in heart failure with preserved ejection fraction: evidence of M2 macrophage activation in disease pathogenesis. J Card Fail. 2015; https://doi.org/10.1016/j.cardfail.2014.11.004.

  86. Zeng H, Chen JX. Sirtuin 3, endothelial metabolic reprogramming, and heart failure with preserved ejection fraction. J Cardiovasc Pharmacol. 2019; https://doi.org/10.1097/fjc.0000000000000719.

  87. He X, Zeng H, Chen ST, Roman RJ, Aschner JL, Didion S, et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J Mol Cell Cardiol. 2017; https://doi.org/10.1016/j.yjmcc.2017.09.007.

  88. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013; https://doi.org/10.1016/j.jacc.2013.02.092.

  89. van Dijk CG, Oosterhuis NR, Xu YJ, Brandt M, Paulus WJ, van Heerebeek L, et al. Distinct endothelial cell responses in the heart and kidney microvasculature characterize the progression of heart failure with preserved ejection fraction in the obese ZSF1 rat with cardiorenal metabolic syndrome. Circ Heart Fail. 2016; https://doi.org/10.1161/circheartfailure.115.002760.

  90. d'Agostino C, Labinskyy V, Lionetti V, Chandler MP, Lei B, Matsuo K, et al. Altered cardiac metabolic phenotype after prolonged inhibition of NO synthesis in chronically instrumented dogs. Am J Physiol Heart Circ Physiol. 2006; https://doi.org/10.1152/ajpheart.00745.2005.

  91. Dulce RA, Kanashiro-Takeuchi RM, Takeuchi LM, Salerno AG, Wanschel A, Kulandavelu S, et al. Synthetic growth hormone-releasing hormone agonist ameliorates the myocardial pathophysiology characteristic of heart failure with preserved ejection fraction. Cardiovasc Res. 2023; https://doi.org/10.1093/cvr/cvac098.

  92. Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019; https://doi.org/10.1038/s41586-019-1100-z.

  93. Sun F, Wang C, Feng H, Yu F, Zhang X, Zhang P, et al. Visualization of activated fibroblasts in heart failure with preserved ejection fraction with [(18)F]AlF-NOTA-FAPI-04 PET/CT imaging. Mol Pharm. 2023; https://doi.org/10.1021/acs.molpharmaceut.3c00075.

  94. Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med. 2020; https://doi.org/10.15252/emmm.201910865.

  95. Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol. 2018; https://doi.org/10.1016/j.jacc.2018.03.509.

  96. Gorter TM, van Woerden G, Rienstra M, Dickinson MG, Hummel YM, Voors AA, et al. Epicardial adipose tissue and invasive hemodynamics in heart failure with preserved ejection fraction. JACC Heart Fail. 2020; https://doi.org/10.1016/j.jchf.2020.06.003.

  97. Liu J, Yu Q, Li Z, Zhou Y, Liu Z, You L, et al. Epicardial adipose tissue density is a better predictor of cardiometabolic risk in HFpEF patients: a prospective cohort study. Cardiovasc Diabetol. 2023; https://doi.org/10.1186/s12933-023-01778-8.

  98. Packer M. Leptin-aldosterone-neprilysin axis: identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation. 2018; https://doi.org/10.1161/circulationaha.117.032474.

  99. Abd El-Aziz TA, Mohamed RH, Mohamed RH, Pasha HF. Leptin, leptin gene and leptin receptor gene polymorphism in heart failure with preserved ejection fraction. Heart Vessels. 2012; https://doi.org/10.1007/s00380-011-0152-2.

  100. Hall ME, Harmancey R, Stec DE. Lean heart: role of leptin in cardiac hypertrophy and metabolism. World J Cardiol. 2015; https://doi.org/10.4330/wjc.v7.i9.511.

  101. Schiattarella GG, Alcaide P, Condorelli G, Gillette TG, Heymans S, Jones EAV, et al. Immunometabolic mechanisms of heart failure with preserved ejection fraction. Nat Cardiovasc Res. 2022; https://doi.org/10.1038/s44161-022-00032-w.

  102. Abdellatif M, Trummer-Herbst V, Koser F, Durand S, Adão R, Vasques-Nóvoa F, et al. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci Transl Med. 2021; https://doi.org/10.1126/scitranslmed.abd7064.

  103. Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M, Kinchen JM, et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 2019; https://doi.org/10.1016/j.cmet.2018.12.004.

  104. Cao Y, Wang Y, Zhou Z, Pan C, Jiang L, Zhou Z, et al. Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure. Science. 2022; https://doi.org/10.1126/science.abn0910.

  105. Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial dysfunction in heart failure with preserved ejection fraction: what are the experimental proofs? Front Physiol. 2022; https://doi.org/10.3389/fphys.2022.906272.

  106. Brassington K, Kanellakis P, Cao A, Toh BH, Peter K, Bobik A, et al. Crosstalk between cytotoxic CD8+ T cells and stressed cardiomyocytes triggers development of interstitial cardiac fibrosis in hypertensive mouse hearts. Front Immunol. 2022; https://doi.org/10.3389/fimmu.2022.1040233.

  107. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022; https://doi.org/10.1161/cir.0000000000001062.

  108. LaPenna KB, Li Z, Doiron JE, Sharp TE 3rd, Xia H, Moles K, et al. Combination sodium nitrite and hydralazine therapy attenuates heart failure with preserved ejection fraction severity in a “2-Hit” murine model. J Am Heart Assoc. 2023; https://doi.org/10.1161/jaha.122.028480.

  109. Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015; https://doi.org/10.1056/NEJMoa1510774.

  110. van Heerebeek L, Hamdani N, Falcão-Pires I, Leite-Moreira AF, Begieneman MP, Bronzwaer JG, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012; https://doi.org/10.1161/circulationaha.111.076075.

  111. Thakker RA, Elbadawi A, Albaeni A, Perez C, Hasan SM, Murrieta JI, et al. Outcomes with sGC therapy in patients with HFpEF: a meta-analysis of prior trials. Curr Probl Cardiol. 2022; https://doi.org/10.1016/j.cpcardiol.2021.100924.

  112. Halabi A, Sen J, Huynh Q, Marwick TH. Metformin treatment in heart failure with preserved ejection fraction: a systematic review and meta-regression analysis. Cardiovasc Diabetol. 2020; https://doi.org/10.1186/s12933-020-01100-w.

  113. Gu J, Yin ZF, Zhang JF, Wang CQ. Association between long-term prescription of metformin and the progression of heart failure with preserved ejection fraction in patients with type 2 diabetes mellitus and hypertension. Int J Cardiol. 2020; https://doi.org/10.1016/j.ijcard.2019.11.087.

  114. Slater RE, Strom JG, Methawasin M, Liss M, Gotthardt M, Sweitzer N, et al. Metformin improves diastolic function in an HFpEF-like mouse model by increasing titin compliance. J Gen Physiol. 2019; https://doi.org/10.1085/jgp.201812259.

  115. Khan MS, Solomon N, DeVore AD, Sharma A, Felker GM, Hernandez AF, et al. Clinical outcomes with metformin and sulfonylurea therapies among patients with heart failure and diabetes. JACC Heart Fail. 2022; https://doi.org/10.1016/j.jchf.2021.11.001.

  116. Dia M, Leon C, Chanon S, Bendridi N, Gomez L, Rieusset J, et al. Effect of metformin on T2D-induced MAM Ca(2+) uncoupling and contractile dysfunction in an early mouse model of diabetic HFpEF. Int J Mol Sci. 2022; https://doi.org/10.3390/ijms23073569.

  117. Lai YC, Tabima DM, Dube JJ, Hughan KS, Vanderpool RR, Goncharov DA, et al. SIRT3-AMP-activated protein kinase activation by nitrite and metformin improves hyperglycemia and normalizes pulmonary hypertension associated with heart failure with preserved ejection fraction. Circulation. 2016; https://doi.org/10.1161/circulationaha.115.018935.

  118. Tanaka A, Node K. Revisited metformin therapy in heart failure with preserved ejection fraction. JACC Heart Fail. 2022; https://doi.org/10.1016/j.jchf.2022.02.012.

  119. Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021; https://doi.org/10.1056/NEJMoa2030183.

  120. Mullens W, Martens P. Empagliflozin-induced changes in epicardial fat: the centerpiece for myocardial protection? JACC Heart Fail. 2021; https://doi.org/10.1016/j.jchf.2021.05.006.

  121. Deschaine B, Verma S, Rayatzadeh H. Clinical evidence and proposed mechanisms of sodium-glucose cotransporter 2 inhibitors in heart failure with preserved ejection fraction: a class effect? Card Fail Rev. 2022; https://doi.org/10.15420/cfr.2022.11.

Download references

Funding

This research was supported by funding from the National Natural Science Foundation of China (82070261, 82170251, 82100312), the National Key Research and Development Program of China (No.2021YFA1100501), the China Postdoctoral Science Foundation (No.2021M692640), the Youth Innovation Team of Shaanxi Universities, the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX2022068), and the Training Program of Practice and Innovation for Postgraduates of Northwestern Polytechnical University (PF2023032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chan Zhang or Heng Ma.

Ethics declarations

Ethics Approval

This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Clinical Relevance

Metabolic reprogramming is a crucial alteration in the pathophysiology of HFpEF, and this study aims to review its molecular basis as a potential therapeutic target. The findings suggest that targeting metabolic reprogramming could be an essential strategy for the treatment of HFpEF.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Sun, M., Jiang, W. et al. Myocardial Metabolic Reprogramming in HFpEF. J. of Cardiovasc. Trans. Res. 17, 121–132 (2024). https://doi.org/10.1007/s12265-023-10433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10433-2

Keywords

Navigation