Skip to main content

Advertisement

Log in

Metabolomics Profiling Predicts Ventricular Arrhythmia in Patients with an Implantable Cardioverter Defibrillator

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Implantable cardioverter defibrillators (ICDs) reduce sudden cardiac death (SCD) when patients experience life-threatening ventricular arrhythmias (LTVA). However, current strategies determining ICD patient selection and risk stratification are inefficient. We used metabolomics to assess whether dysregulated metabolites are associated with LTVA and identify potential biomarkers. Baseline plasma samples were collected from 72 patients receiving ICDs. Over a median follow-up of 524.0 days (range 239.0–705.5), LTVA occurred in 23 (31.9%) patients (22 effective ICD treatments and 1 SCD). After confounding risk factors adjustment for age, smoking, secondary prevention, and creatine kinase MB, 23 metabolites were significantly associated with LTVA. Pathway analysis revealed LTVA associations with disrupted metabolism of glycine, serine, threonine, and branched chain amino acids. Pathway enrichment analysis identified a panel of 6 metabolites that potentially predicted LTVA, with an area under the receiver operating characteristic curve of 0.8. Future studies are necessary on biological mechanisms and potential clinical use.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

AST:

Aspartate aminotransferase

BUN:

Blood urea nitrogen

CABG:

Coronary artery bypass grafting

ESI:

Electrospray ionization

FAHFA:

Fatty acid esters of hydroxy fatty acids

HR:

Hazard ratios

ICD:

Implantable cardioverter defibrillator

ICM:

Ischemic cardiomyopathy

LASSO:

Least absolute shrinkage and selection operator

LDL:

Low-density lipoprotein

LPG:

Lysophosphatidylglycerol

LTVA:

Life-threatening ventricular arrhythmia

LVEDD:

Left ventricular end diastolic diameter

LVEF:

Left ventricular ejection fraction

LysoPG:

Lysophosphatidylglycerol

MI:

Myocardial infarction

NICM:

Non-ischemic cardiomyopathy

NYHA:

New York Heart Association

PA:

Phosphatidic acid

PI:

Phosphatidylinositol

ROC:

Receiver operating characteristic

SCD:

Sudden cardiac death

SM:

Sphingomyelin

TC:

Total cholesterol

References

  1. Goldberger JJ, Cain ME, Hohnloser SH, Kadish AH, Knight BP, Lauer MS, et al. American Heart Association/American College of Cardiology Foundation/Heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death: a scientific statement from the American Heart Association Council on Clinical Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. Circulation. 2008;118(14):1497–518.

    Article  PubMed  Google Scholar 

  2. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2018;72(14):e91–e220. https://doi.org/10.1016/j.jacc.2017.10.054.

    Article  PubMed  Google Scholar 

  3. Epstein AE, DiMarco JP, Ellenbogen KA, Estes NAM, Freedman RA, Gettes LS, et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;51(21):e1–62. https://doi.org/10.1016/j.jacc.2008.02.032.

    Article  PubMed  Google Scholar 

  4. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225–37. https://doi.org/10.1056/NEJMoa043399.

    Article  CAS  PubMed  Google Scholar 

  5. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346(12):877–83. https://doi.org/10.1056/NEJMoa013474.

    Article  PubMed  Google Scholar 

  6. Zwanziger J, Hall WJ, Dick AW, Zhao H, Mushlin AI, Hahn RM, et al. The cost effectiveness of implantable cardioverter-defibrillators: results from the Multicenter Automatic Defibrillator Implantation Trial (MADIT)-II. J Am Coll Cardiol. 2006;47(11):2310–8. https://doi.org/10.1016/j.jacc.2006.03.032.

    Article  PubMed  Google Scholar 

  7. Buxton AE, Lee KL, Hafley GE, Pires LA, Fisher JD, Gold MR, et al. Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease: lessons from the MUSTT study. J Am Coll Cardiol. 2007;50(12):1150–7. https://doi.org/10.1016/j.jacc.2007.04.095.

    Article  PubMed  Google Scholar 

  8. Goldenberg I, Vyas AK, Hall WJ, Moss AJ, Wang H, He H, et al. Risk stratification for primary implantation of a cardioverter-defibrillator in patients with ischemic left ventricular dysfunction. J Am Coll Cardiol. 2008;51(3):288–96. https://doi.org/10.1016/j.jacc.2007.08.058.

    Article  PubMed  Google Scholar 

  9. Goldberger JJ, Buxton AE, Cain M, Costantini O, Exner DV, Knight BP, et al. Risk stratification for arrhythmic sudden cardiac death: identifying the roadblocks. Circulation. 2011;123(21):2423–30. https://doi.org/10.1161/CIRCULATIONAHA.110.959734.

    Article  PubMed  Google Scholar 

  10. Griffin JL, Atherton H, Shockcor J, Atzori L. Metabolomics as a tool for cardiac research. Nat Rev Cardiol. 2011;8(11):630–43. https://doi.org/10.1038/nrcardio.2011.138.

    Article  CAS  PubMed  Google Scholar 

  11. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012;126(9):1110–20. https://doi.org/10.1161/CIRCULATIONAHA.111.060368.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451–9. https://doi.org/10.1038/nrm.2016.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2018;72(14):1677–749. https://doi.org/10.1016/j.jacc.2017.10.053.

    Article  PubMed  Google Scholar 

  14. Zhao J, Yang S, Jing R, Jin H, Hu Y, Wang J, et al. Plasma metabolomic profiles differentiate patients with dilated cardiomyopathy and ischemic cardiomyopathy. Front Cardiovasc Med. 2020;7:597546. https://doi.org/10.3389/fcvm.2020.597546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics. 2019;68(1):e86. https://doi.org/10.1002/cpbi.86.

    Article  PubMed  Google Scholar 

  16. Køber L, Thune JJ, Nielsen JC, Haarbo J, Videbæk L, Korup E, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375(13):1221–30. https://doi.org/10.1056/NEJMoa1608029.

    Article  PubMed  Google Scholar 

  17. Barbier P, Mirea O, Cefalù C, Maltagliati A, Savioli G, Guglielmo M. Reliability and feasibility of longitudinal AFI global and segmental strain compared with 2D left ventricular volumes and ejection fraction: intra- and inter-operator, test-retest, and inter-cycle reproducibility. Eur Heart J Cardiovasc Imaging. 2015;16(6):642–52. https://doi.org/10.1093/ehjci/jeu274.

    Article  PubMed  Google Scholar 

  18. Barsheshet A, Moss AJ, Huang DT, McNitt S, Zareba W, Goldenberg I. Applicability of a risk score for prediction of the long-term (8-year) benefit of the implantable cardioverter-defibrillator. J Am Coll Cardiol. 2012;59(23):2075–9. https://doi.org/10.1016/j.jacc.2012.02.036.

    Article  PubMed  Google Scholar 

  19. Zhang S, Ching C-K, Huang D, Liu Y-B, Rodriguez-Guerrero DA, Hussin A, et al. Utilization of implantable cardioverter-defibrillators for the prevention of sudden cardiac death in emerging countries: improve SCA clinical trial. Heart Rhythm. 2020;17(3):468–75. https://doi.org/10.1016/j.hrthm.2019.09.023.

    Article  PubMed  Google Scholar 

  20. Martínez Y, Li X, Liu G, Bin P, Yan W, Más D, et al. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids. 2017;49(12):2091–8. https://doi.org/10.1007/s00726-017-2494-2.

    Article  CAS  PubMed  Google Scholar 

  21. Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer. 2019;19(11):625–37. https://doi.org/10.1038/s41568-019-0187-8.

    Article  CAS  PubMed  Google Scholar 

  22. Lundberg P, Dudman NP, Kuchel PW, Wilcken DE. 1H NMR determination of urinary betaine in patients with premature vascular disease and mild homocysteinemia. Clin Chem. 1995;41(2):275–83.

    Article  CAS  PubMed  Google Scholar 

  23. Lever M, Atkinson W, Slow S, Chambers ST, George PM. Plasma and urine betaine and dimethylglycine variation in healthy young male subjects. Clin Biochem. 2009;42(7–8):706–12. https://doi.org/10.1016/j.clinbiochem.2009.02.001.

    Article  CAS  PubMed  Google Scholar 

  24. Barter PJ, Rye K-A. Homocysteine and cardiovascular disease: is HDL the link? Circ Res. 2006;99(6):565–6. https://doi.org/10.1161/01.RES.0000243583.39694.1f.

    Article  CAS  PubMed  Google Scholar 

  25. Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail. 2016;9(1):e002314. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002314.

    Article  CAS  PubMed  Google Scholar 

  26. Svingen GFT, Ueland PM, Pedersen EKR, Schartum-Hansen H, Seifert R, Ebbing M, et al. Plasma dimethylglycine and risk of incident acute myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol. 2013;33(8):2041–8. https://doi.org/10.1161/ATVBAHA.113.301714.

    Article  CAS  PubMed  Google Scholar 

  27. Lever M, George PM, Elmslie JL, Atkinson W, Slow S, Molyneux SL, et al. Betaine and secondary events in an acute coronary syndrome cohort. PLoS One. 2012;7(5):e37883. https://doi.org/10.1371/journal.pone.0037883.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blüml S. In vivo quantitation of cerebral metabolite concentrations using natural abundance 13C MRS at 1.5 T. J Magnet Resonance (San Diego, Calif.: 1997). 1999;136(2):219–25. https://doi.org/10.1006/jmre.1998.1618.

    Article  Google Scholar 

  29. Sahin I, Alkan A, Keskin L, Cikim A, Karakas HM, Firat AK, Sigirci A. Evaluation of in vivo cerebral metabolism on proton magnetic resonance spectroscopy in patients with impaired glucose tolerance and type 2 diabetes mellitus. J Diabetes Complicat. 2008;22(4):254–60. https://doi.org/10.1016/j.jdiacomp.2007.03.007.

    Article  Google Scholar 

  30. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81(2):89–131. https://doi.org/10.1016/j.pneurobio.2006.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schuff N, Meyerhoff DJ, Mueller S, Chao L, Sacrey DT, Laxer K, Weiner MW. N-acetylaspartate as a marker of neuronal injury in neurodegenerative disease. Adv Exp Med Biol. 2006;576:241–62; discussion 361-363. https://doi.org/10.1007/0-387-30172-0_17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Daniele G, Campi B, Saba A, Codini S, Ciccarone A, Giusti L, et al. Plasma N-acetylaspartate is related to age, obesity, and glucose metabolism: effects of antidiabetic treatment and bariatric surgery. Front Endocrinol. 2020;11:216. https://doi.org/10.3389/fendo.2020.00216.

    Article  Google Scholar 

  33. Lee CW, Lee JH, Lim TH, Yang HS, Hong MK, Song JK, et al. Prognostic significance of cerebral metabolic abnormalities in patients with congestive heart failure. Circulation. 2001;103(23):2784–7. https://doi.org/10.1161/01.cir.103.23.2784.

    Article  CAS  PubMed  Google Scholar 

  34. Lee CW, Lee JH, Kim JJ, Park SW, Hong MK, Kim ST, et al. Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy. J Am Coll Cardiol. 1999;33(5):1196–202. https://doi.org/10.1016/s0735-1097(98)00701-3.

    Article  CAS  PubMed  Google Scholar 

  35. Makide K, Kitamura H, Sato Y, Okutani M, Aoki J. Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins Other Lipid Mediat. 2009;89(3–4):135–9. https://doi.org/10.1016/j.prostaglandins.2009.04.009.

    Article  CAS  PubMed  Google Scholar 

  36. Herrmann J, Mannheim D, Wohlert C, Versari D, Meyer FB, McConnell JP, et al. Expression of lipoprotein-associated phospholipase A(2) in carotid artery plaques predicts long-term cardiac outcome. Eur Heart J. 2009;30(23):2930–8. https://doi.org/10.1093/eurheartj/ehp309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park KS, Kim M-K, Im D-S, Bae Y-S. Effect of lysophosphatidylglycerol on several signaling molecules in OVCAR-3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. Biochem Pharmacol. 2007;73(5):675–81. https://doi.org/10.1016/j.bcp.2006.11.010.

    Article  CAS  PubMed  Google Scholar 

  38. Walsh SK, Hector EE, Andréasson A-C, Jönsson-Rylander A-C, Wainwright CL. GPR55 deletion in mice leads to age-related ventricular dysfunction and impaired adrenoceptor-mediated inotropic responses. PLoS One. 2014;9(9):e108999. https://doi.org/10.1371/journal.pone.0108999.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zegarlińska J, Piaścik M, Sikorski AF, Czogalla A. Phosphatidic acid - a simple phospholipid with multiple faces. Acta Biochim Pol. 2018;65(2):163–71. https://doi.org/10.18388/abp.2018_2592.

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi H, Takeishi Y, Seidler T, Arimoto T, Akiyama H, Hozumi Y, et al. Adenovirus-mediated overexpression of diacylglycerol kinase-zeta inhibits endothelin-1-induced cardiomyocyte hypertrophy. Circulation. 2005;111(12):1510–6. https://doi.org/10.1161/01.CIR.0000159339.00703.22.

    Article  CAS  PubMed  Google Scholar 

  41. Arimoto T, Takeishi Y, Takahashi H, Shishido T, Niizeki T, Koyama Y, et al. Cardiac-specific overexpression of diacylglycerol kinase zeta prevents Gq protein-coupled receptor agonist-induced cardiac hypertrophy in transgenic mice. Circulation. 2006;113(1):60–6. https://doi.org/10.1161/CIRCULATIONAHA.105.560771.

    Article  CAS  PubMed  Google Scholar 

  42. Dhalla NS, Xu YJ, Sheu SS, Tappia PS, Panagia V. Phosphatidic acid: a potential signal transducer for cardiac hypertrophy. J Mol Cell Cardiol. 1997;29(11):2865–71. https://doi.org/10.1006/jmcc.1997.0522.

    Article  CAS  PubMed  Google Scholar 

  43. Waugh M. Measuring phosphatidylinositol generation on biological membranes. Methods Mol Biol. 2016;1376:239–46. https://doi.org/10.1007/978-1-4939-3170-5_20.

    Article  CAS  PubMed  Google Scholar 

  44. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19. https://doi.org/10.1038/nrg1879.

    Article  CAS  PubMed  Google Scholar 

  45. Ghigo A, Laffargue M, Li M, Hirsch E. PI3K and calcium signaling in cardiovascular disease. Circ Res. 2017;121(3):282–92. https://doi.org/10.1161/CIRCRESAHA.117.310183.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the work of our clinical colleagues who performed clinical data collection and all individuals who participated in this study.

Funding

This research was funded by Shengwen Yang of the Beijing Chaoyang Hospital Golden Seeds Foundation (CYJZ202103), Wei Hua of the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2017-I2M-1-009), and the National Natural Science Foundation of China (81570370).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Shengwen Yang and Junhan Zhao; methodology, Hongxia Niu; software, Xi Liu; validation, Chi Cai and Jing Wang; formal analysis, Shengwen Yang; investigation, Shengwen Yang; resources, Xi Liu and Min Gu; data curation, Junhan Zhao; writing, original draft preparation, Junhan Zhao; writing, review and editing, Liang Chen; visualization, Junhan Zhao; supervision, Wei Hua and Liang Chen; project administration, Junhan Zhao; funding acquisition, Shengwen Yang and Wei Hua. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wei Hua.

Ethics declarations

Ethics Approval and Consent to Participate

The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Review Board of Fuwai. Informed consent was obtained from all participants in the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shengwen Yang, Junhan Zhao, and Xi Liu are lead co-authors in the making of this manuscript.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhao, J., Liu, X. et al. Metabolomics Profiling Predicts Ventricular Arrhythmia in Patients with an Implantable Cardioverter Defibrillator. J. of Cardiovasc. Trans. Res. 17, 91–101 (2024). https://doi.org/10.1007/s12265-023-10413-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10413-6

Keywords

Navigation