Skip to main content
Log in

Fluid Shear Stress Ameliorates Prehypertension-Associated Decline in Endothelium-Reparative Potential of Early Endothelial Progenitor Cells

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

This study investigated the effects of prehypertension and shear stress on the reendothelialization potential of human early EPCs and explored its potential mechanisms. Early EPCs from the prehypertensive patients showed reduced migration and adhesion in vitro and demonstrated a significantly impaired in vivo reendothelialization capacity. Shear stress pretreatment markedly promoted the in vivo reendothelialization capacity of EPCs. Although basal CXCR4 expression in early EPCs from prehypertensive donors was similar to that from healthy control, SDF-1-induced phosphorylation of CXCR4 was lower in prehypertensive EPCs. Shear stress up-regulated CXCR4 expression and increased CXCR4 phosphorylation, and restored the SDF-1/CXCR4-dependent JAK-2 phosphorylation in prehypertensive EPCs. CXCR4 knockdown or JAK-2 inhibitor treatment prevents against shear stress-induced increase in the migration, adhesion and reendothelialization capacity of the prehypertensive EPCs. Collectively, CXCR4 receptor profoundly modulates the reendothelialization potential of early EPCs. The abnormal CXCR4-mediated JAK-2 signaling may contribute to impaired functions of EPCs from patients with prehypertension.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Deanfield, J. E., Halcox, J. P., & Rabelink, T. J. (2007). Endothelial function and dysfunction: testing and clinical relevance. Circulation., 115, 1285–1295.

    Article  PubMed  Google Scholar 

  2. Dikalova, A. E., Pandey, A., Xiao, L., Arslanbaeva, L., Sidorova, T., Lopez, M. G., Billings 4th, F. T., Verdin, E., Auwerx, J., Harrison, D. G., & Dikalov, S. I. (2020). Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circ Res., 126, 439–452.

    Article  CAS  PubMed  Google Scholar 

  3. James, T. M., Casey, G. T., Jeffrey, S. O., Yesser, S., Matthew, J. H., Arshed, A. Q., & Brett, J. W. (2021). Inhibition of iNOS augments cutaneous endothelial NO-dependent vasodilation in prehypertensive non-Hispanic Whites and in non-Hispanic Blacks. Am J Physiol Heart Circ Physiol., 320, H190–H199.

    Article  Google Scholar 

  4. Li, W., Jin, C., Vaidya, A., Wu, Y., Rexrode, K., Zheng, X., Gurol, M. E., Ma, C., Wu, S., & Gao, X. (2017). Blood Pressure Trajectories and the Risk of Intracerebral Hemorrhage and Cerebral Infarction: A Prospective Study. Hypertension., 70, 508–514.

    Article  CAS  PubMed  Google Scholar 

  5. Duan, W., Wu, J., Liu, S., Jiao, Y., Zheng, L., Sun, Y., & Sun, Z. (2020). Impact of Prehypertension on the Risk of Major Adverse Cardiovascular Events in a Chinese Rural Cohort. Am J Hypertens., 33, 465–470.

    Article  PubMed  Google Scholar 

  6. Ke, X., Shu, X. R., Wu, F., Hu, Q. S., Deng, B. Q., Wang, J. F., & Nie, R. Q. (2016). Overexpression of the β2AR gene improves function and re-endothelialization capacity of EPCs after arterial injury in nude mice. Stem Cell Res Ther., 7, 73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hu, Q., Zhang, T., Li, Y., Feng, J., Nie, R., Wang, X., Peng, C., & Ke, X. (2020). β2-dependent signaling contributes to in-vivo reendothelialization capacity of endothelial progenitor cells by shear stress. J Hypertens., 38, 82–94.

    Article  CAS  PubMed  Google Scholar 

  8. Hu, Q., Ke, X., Zhang, T., Chen, Y., Huang, Q., Deng, B., Xie, S., Wang, J., & Nie, R. (2019). Hydrogen Sulfide improves vascular repair by promoting endothelial nitric oxide synthase-dependent mobilization of endothelial progenitor cells. J Hypertens., 37, 972–984.

    Article  CAS  PubMed  Google Scholar 

  9. Hu, Q. S., Chen, Y. X., Huang, Q. S., Deng, B. Q., Xie, S. L., Wang, J. F., & Nie, R. Q. (2015). Carbon Monoxide Releasing Molecule Accelerates Reendothelialization after Carotid Artery Balloon Injury in Rat. Biomed Environ Sci., 28, 253–262.

    CAS  PubMed  Google Scholar 

  10. Du, L. L., Shen, Z. D., Li, Z. W., Ye, X. W., Wu, M. P., Hong, L. H., & Zhao, Y. B. (2018). TRPC1 Deficiency Impairs the Endothelial Progenitor Cell Function via Inhibition of Calmodulin/eNOS Pathway. J Cardiovasc Transl Res., 11, 339–345.

    Article  PubMed  Google Scholar 

  11. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., & Isner, J. M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science., 275, 964–967.

    Article  CAS  PubMed  Google Scholar 

  12. Shi, Y., Lv, X., Liu, Y. N., Li, B. C., Liu, M. M., Yan, M., Liu, Y. J., Li, Q., Zhang, X. J., He, S., Zhu, M., He, J. L., Zhu, Y., Zhu, Y., & Ai, D. (2018). Elevating ATP-binding cassette transporter G1 improves re-endothelialization function of endothelial progenitor cells via Lyn/Akt/eNOS in diabetic mice. FASEB J., 32, 6525–6536.

    Article  CAS  PubMed  Google Scholar 

  13. Giannotti, G., Doerries, C., Mocharla, P. S., Mueller, M. F., Bahlmann, F. H., Horvàth, T., Jiang, H., Sorrentino, S. A., Steenken, N., Manes, C., Marzilli, M., Rudolph, K. L., Lüscher, T. F., Drexler, H., & Landmesser, U. (2010). Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunctions. Hypertension., 55, 1389–1397.

    Article  CAS  PubMed  Google Scholar 

  14. MacEneaney, O. J., DeSouza, C. A., Weil, B. R., Kushner, E. J., Van Guilder, G. P., Mestek, M. L., Greiner, J. J., & Stauffer, B. L. (2011). Prehypertension and endothelial progenitor cell function. J Hum Hypertens., 25, 57–62.

    Article  CAS  PubMed  Google Scholar 

  15. Hirata, T., Yamamoto, K., Ikeda, K., & Arita, M. (2021). Funtional lipidomics of vascular endothelial cells in response to laminar shear stress. FASEB J., 35, e21301.

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Z., Wang, J. M., Wang, L. C., Chen, L., Tu, C., Luo, C. F., Tang, A. L., Wang, S. M., & Tao, J. (2007). In vitro shear stress modulates antithrombogenic potentials of human endothelial progenitor cells. J Thromb Thrombolysis., 23, 121–127.

    Article  PubMed  Google Scholar 

  17. Hu, Q., Zhang, B., Liu, Y. L., Guo, Y. Q., Zhang, T., Nie, R., Ke, X., & Dong, X. (2020). The effect of fluid shear stress in hydrogen sulphide production and cystathionine γ-lyase expression in human early endothelial progenitor cells. Ann Transl Med., 8, 1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, L., Wu, F., Xia, W. H., Zhang, Y. Y., Xu, S. Y., Cheng, F., Liu, X., Zhang, X. Y., Wang, S. M., & Tao, J. (2010). CXCR4 gene transfer contributes to in vivo reendothelialization capacity of endothelial progenitor cells. Cardiovasc Res., 88, 462–470.

    Article  CAS  PubMed  Google Scholar 

  19. Seshagiri, R. N., Nabanita, K., Hassan, A., Beda, B., Mona, F., Nikhila, A., Adrian, E., Richard, A., & Sabyasachi, S. (2021). Role of Canagliflozin on function of CD34+ve endothelial progenitor cells (EPC) in patients with type 2 diabetes. Cardiovasc Diabetol., 20, 44.

    Article  Google Scholar 

  20. Walter, D. H., Haendeler, J., Reinhold, J., Rochwalsky, U., Seeger, F., Honold, J., Hoffmann, J., Urbich, C., Lehmann, R., Arenzana-Seisdesdos, F., Aicher, A., Heeschen, C., Fichtlscherer, S., Zeiher, A. M., & Dimmeler, S. (2005). Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res., 97, 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  21. Xia, W. H., Yang, Z., Xu, S. Y., Chen, L., Zhang, X. Y., Li, J., Liu, X., Qiu, Y. X., Shuai, X. T., & Tao, J. (2012). Age-related decline in reendothelialization capacity of human endothelial progenitor cells is restored by shear stress. Hypertension., 59, 1225–1231.

    Article  CAS  PubMed  Google Scholar 

  22. Thomas, U., Claudio, B., Fadi, C., Nadia, A. K., Neil, R. P., Dorairaj, P., Agustin, R., Markus, S., George, S. S., Maciej, T., Richard, D. W., Bryan, W., & Aletta, E. S. (2020). 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension., 75, 1334–1357.

    Article  Google Scholar 

  23. Ke, X., Zou, J., Hu, Q., Wang, X., Hu, C., Yang, R., Liang, J., Shu, X., Nie, R., & Peng, C. (2017). Hydrogen Sulfide-Preconditioning of Human Endothelial Progenitor Cells Transplantation Improves Re-Endothelialization in Nude Mice Carotid Artery Injury. Cell Physiol Biochem., 43, 308–319.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, L., Meng, X., Zhang, Q. Y., Dong, X. Q., & Zhou, X. L. (2021). A narrative review of prehypertension and the cardiovascular system: effects and potential pathogenic mechanisms. Ann Transl Med., 9, 170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Doris, S., Renate, H. W., Caterina, S., Karoline, L., Burcu, G., Monika, S., Mingjie, W., Julia, T., Martin, B., Andreas, B., Markus, W., Stephanie, S. K., Eva, B., Petra, C., Andreas, H., Bernhard, S., Otto, M., Friedrich, A., Alfred, K., et al. (2019). Cytokine-Like 1 Is a Novel Proangiogenic Factor Secreted by and Mediating Functions of Endothelial Progenitor cells. Circ Res., 124, 243–255.

    Article  Google Scholar 

  26. Cheng, M., Zhou, J., Wu, M., Boriboun, C., Thorne, T., Liu, T., Xiang, Z., Zeng, Q., Tanaka, T., Tang, Y. L., Kishore, R., Tomasson, M. H., Miller, R. J., Losordo, D. W., & Qin, G. (2010). CXCR4-mediated bone marrow progenitor cell maintenance and mobilization are modulated by c-kit activity. Circ Res., 107, 1083–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vila-Coro, A. J., Rodríguez-Frade, J. M., Martín De Ana, A., Moreno-Ortíz, M. C., Martínez-A, C., & Mellado, M. (1999). The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J., 13, 1699–1710.

    Article  CAS  PubMed  Google Scholar 

  28. Valdembri, D., Serini, G., Vacca, A., Ribatti, D., & Bussolino, F. (2002). In vivo activation of JAK2/STAT-3 pathway during angiogenesis induced by GM-CSF. FASEB J., 16, 225–227.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, X. F., Wang, J. F., Matczak, E., Proper, J. A., & Groopman, J. E. (2001). Janus kinase 2 is involved instromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood., 97, 3342–3348.

    Article  CAS  PubMed  Google Scholar 

  30. Obi, S., Masuda, H., Shizuno, T., Sato, A., Yamamoto, K., Ando, J., Abe, Y., & Asahara, T. (2012). Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. Am J Physiol Cell Physiol., 303, C595–C606.

    Article  CAS  PubMed  Google Scholar 

  31. Di Stefano, R., Barsotti, M. C., Felice, F., Vlachopoulos, C., & Balbarini, A. (2011). Endothelial progenitor cells in prehypertension. Curr Pharm Des., 17, 3002–3019.

    Article  PubMed  Google Scholar 

  32. Sandri, M., Viehmann, M., Adams, V., Rabald, K., Mangner, N., Höllriegel, R., Lurz, P., Erbs, S., Linke, A., Kirsch, K., Möbius-Winkler, S., Thiery, J., Teupser, D., Hambrecht, R., Schuler, G., & Gielen, S. (2016). Chronic heart failure and aging-effect of exercise training on endothelial function and mechanisms of endothelial regeneration: Results from the Leipzig Exercise Intervention in Chronic heart failure and Aging (LEICA) study. Eur J Prev Cardiol., 23, 349–358.

    Article  PubMed  Google Scholar 

  33. Tan, Q., Li, Y., & Guo, Y. (2021). Exercise Training Improves Function of Endothelial Progenitor cells in Patients with Metabolic Syndrome. Arq Bras Cardiol., 117, 108–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lévesque, J. P., Hendy, J., Takamatsu, Y., Simmons, P. J., & Bendall, L. J. (2003). Disruption of CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest., 111, 18.

    Article  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81700263, No. 81370309 and No. 82100348); the Basic and Applied Basic Research Foundation of Guangdong Province of China (No. 2020A1515110865); Funding by Science and Technology Projects in Guangzhou City of China (No. 202102021124). This project was also supported by a grant from the Medical Science Technology Research Foundation of Guangdong Province of China (No. B2021162).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and X.C. conceived and designed research; Q.H., X.D. and K.Z. performed experiments; Q.H., T.Z., J.F., X.K., H.L. and Y.C. analyzed data; H.S., C.L., T.Z., J.F., X.K., H.L. and R.N. interpreted results of experiments; Q.H., X.D., K.Z., H.S., C.L., T.Z., J.F., X.K., H.L., Y.C., R.N., X.C. and Y.L. approved final version of manuscript.

Corresponding authors

Correspondence to Xiaoming Chen or Youbin Liu.

Ethics declarations

Disclosures

No conflicts of interest are declared by the authors.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Figure S1:

Shear stress enhanced CXCR4 expression in EPCs. A and C. Representative images and quantification of CXCR4 mRNA expression detected by RT-PCR (A) and total CXCR4 protein expression detected by West blot analysis (C) in EPCs treated with 15 dyn/cm2 shear stress for durations as indicated (*P < 0.05 vs. static healthy EPCs; #P < 0.05 vs. static prehypertensive EPCs; n = 5). B and D. Representative images and quantification of CXCR4 mRNA expression detected by RT-PCR (B) and total CXCR4 protein expression by West blot analysis (D) in EPCs treated for 12 h with different doses of shear stress as indicated (*P < 0.05 vs. static healthy EPCs; # P < 0.05 vs. static prehypertensive EPCs; n = 5). (PNG 1839 kb)

High Resolution Image (TIF 2392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Dong, X., Zhang, K. et al. Fluid Shear Stress Ameliorates Prehypertension-Associated Decline in Endothelium-Reparative Potential of Early Endothelial Progenitor Cells. J. of Cardiovasc. Trans. Res. 15, 1049–1063 (2022). https://doi.org/10.1007/s12265-022-10235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10235-y

Keywords

Navigation