Skip to main content
Log in

Vagal Stimulation in Heart Failure

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Heart failure (HF) is accompanied by an autonomic imbalance that is almost always characterized by both increased sympathetic activity and withdrawal of vagal activity. Experimentally, vagal stimulation has been shown to exert profound antiarrhythmic activity and to improve cardiac function and survival in HF models. A open-label pilot clinical study in 32 patients with chronic HF has shown safety and tolerability of chronic vagal stimulation associated with subjective (improved quality of life and 6-min walk test) and objective improvements (reduced left ventricular systolic volumes and improved left ventricular ejection fraction). Three larger clinical studies, including a phase III trial are currently ongoing and will evaluate the clinical role of this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Brack, K. E., Winter, J., & Ng, G. A. (2013). Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation-tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Failure Reviews, 18, 389–408.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Floras, J. S. (2009). Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. Journal of the American College of Cardiology, 54, 375–385.

    Article  PubMed  CAS  Google Scholar 

  3. Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., Ganiats, T. G., et al. (2009). 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 119, e391–e479.

    Article  PubMed  Google Scholar 

  4. Billman, G. E., Schwartz, P. J., & Stone, H. L. (1982). Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation, 66, 874–880.

    Article  PubMed  CAS  Google Scholar 

  5. Schwartz, P. J., Vanoli, E., Stramba Badiale, M., De Ferrari, G., Billman, G. E., & Foreman, R. D. (1988). Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation, 78, 969–979.

    Article  PubMed  CAS  Google Scholar 

  6. Kleiger, R. E., Miller, J. P., Bigger, J. T., Jr., Moss, A. J., & the Multicenter Post Infarction Research Group. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. American Journal of Cardiology, 59, 256–262.

    Article  PubMed  CAS  Google Scholar 

  7. La Rovere, M. T., Bigger, J. T., Marcus, F., Mortara, A., & Schwartz, P. J. (1998). ATRAMI (autonomic tone and reflexes after myocardial infarction), baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet, 351, 478–484.

    Article  PubMed  Google Scholar 

  8. Schmidt, G., Malik, M., Barthel, P., Schneider, R., Ulm, K., Rolnitzky, L., et al. (1999). Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet, 353, 1390–1396.

    Article  PubMed  CAS  Google Scholar 

  9. De Ferrari, G. M., Sanzo, A., Bertoletti, A., Specchia, G., Vanoli, E., & Schwartz, P. J. (2007). Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. Journal of the American College of Cardiology, 50, 2285–2290.

    Article  PubMed  Google Scholar 

  10. Eckberg, D. L., Drabinsky, M., & Braunwald, E. (1971). Defective cardiac parasympathetic control in patients with heart disease. New England Journal of Medicine, 285, 877–883.

    Article  PubMed  CAS  Google Scholar 

  11. Ferguson, D. W., Berg, W. J., Roach, P. J., Oren, R. M., & Mark, A. L. (1992). Effects of heart failure on baroreflex control of sympathetic neural activity. American Journal of Cardiology, 69, 523–531.

    Article  PubMed  CAS  Google Scholar 

  12. Dibner Dunlap, M. E., Smith, M. L., Kinugawa, T., & Thames, M. D. (1996). Enalapatrilat augments arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in patients with heart failure. Journal of the American College of Cardiology, 27, 358–364.

    Article  PubMed  CAS  Google Scholar 

  13. Dibner Dunlap, M. E. (1992). Arterial or cardiopulmonary baroreflex control of sympathetic nerve activity in heart failure? American Journal of Cardiology, 70, 1640–1642.

    Article  PubMed  CAS  Google Scholar 

  14. Bibevski, S., & Dunlap, M. E. (2011). Evidence for impaired vagus nerve activity in heart failure. Heart Failure Reviews, 16, 129–135.

    Article  PubMed  Google Scholar 

  15. Mortara, A., La Rovere, M. T., Pinna, G. D., Prpa, A., Maestri, R., Febo, O., et al. (1997). Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation, 96, 3450–3458.

    Article  PubMed  CAS  Google Scholar 

  16. La Rovere, M. T., Pinna, G. D., Maestri, R., Robbi, E., Caporotondi, A., Guazzotti, G., et al. (2009). Prognostic implications of baroreflex senstivity in heart failure patients in the beta-blocking era. Journal of the American College of Cardiology, 53, 193–199.

    Article  PubMed  Google Scholar 

  17. Adamson, P. B., Smith, A. L., Abraham, W. T., Kleckner, K. J., Stadler, R. W., Shih, A., et al. (2004). Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization device. Circulation, 110, 2389–2394.

    Article  PubMed  Google Scholar 

  18. Einbrodt (1859) Ueber Herzreizung und ihr Verhaeltnis zum Blutdruck. Akademie der Wissenschaften (Vienna). Sitzungsberichte 38:345

  19. Yoon, M. S., Han, J., Tse, W. W., & Rogers, R. (1977). Effects of vagal stimulation, atropine, and propranolol on fibrillation threshold of normal and ischemic ventricles. American Heart Journal, 93, 60–65.

    Article  PubMed  CAS  Google Scholar 

  20. Kolman, B. S., Verrier, R. L., & Lown, B. (1975). The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of the sympathetic-parasympathetic interactions. Circulation, 52, 578–585.

    Article  PubMed  CAS  Google Scholar 

  21. Scherlag, B. J., Helfant, R. H., Haft, J. I., & Damato, A. N. (1970). Electrophysiology underlying ventricular arrhythmias due to coronary ligation. American Journal of Physiology, 219, 1665–1671.

    PubMed  CAS  Google Scholar 

  22. Kent, K. M., Smith, E. R., Redwood, D. R., & Epstein, S. E. (1973). Electrical stability of acutely ischemic myocardium: influences of heart rate and vagal stimulation. Circulation, 47, 291–298.

    Article  PubMed  CAS  Google Scholar 

  23. Myers, R. W., Pearlman, A. S., Hyman, R. M., Goldstein, R. A., Kent, K. M., Goldstein, R. E., et al. (1974). Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation, 49, 943–947.

    Article  PubMed  CAS  Google Scholar 

  24. Yoon, M. S., Fondacaro, J. D., & Han, J. (1978). Effects of vagal stimulation and atropine on ventricular arrhythmias during acute coronary occlusion. Journal of Electrocardiology, 11, 27–31.

    Article  PubMed  CAS  Google Scholar 

  25. De Ferrari, G. M., Vanoli, E., Stramba-Badiale, M., Hull, S. S., Jr., Foreman, R. D., & Schwartz, P. J. (1991). Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with a healed myocardial infarction. American Journal of Physiology, 261, H63–H69.

    PubMed  Google Scholar 

  26. Vanoli, E., De Ferrari, G. M., Stramba-Badiale, M., Hull, S. S., Jr., Foreman, R. D., & Schwartz, P. J. (1991). Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circulation Research, 68, 1471–1481.

    Article  PubMed  CAS  Google Scholar 

  27. De Ferrari, G. M., Salvati, P., Grossoni, M., Ukmar, G., Vaga, L., Patrono, C., et al. (1993). Pharmacologic modulation of the autonomic nervous system in the prevention of sudden cardiac death. A study with propranolol, methacholine and oxotremorine in conscious dogs with a healed myocardial infarction. Journal of the American College of Cardiology, 22, 283–290.

    Article  PubMed  Google Scholar 

  28. Ando, M., Katare, R. G., Kakinuma, Y., Zhang, D., Yamasaki, F., Muramoto, K., et al. (2005). Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation, 112, 164–170.

    Article  PubMed  CAS  Google Scholar 

  29. Murdock, D. K., Loeb, J. M., Euler, D. E., & Randall, W. C. (1980). Electrophysiology of coronary reperfusion. A mechanism for reperfusion arrhythmias. Circulation, 61, 175–182.

    Article  PubMed  CAS  Google Scholar 

  30. Zuanetti, G., De Ferrari, G. M., Priori, S. G., & Schwartz, P. J. (1987). Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circulation Research, 61, 429–435.

    Article  PubMed  CAS  Google Scholar 

  31. Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. New England Journal of Medicine, 357, 1121–1135.

    Article  PubMed  CAS  Google Scholar 

  32. Kakinuma, Y., Ando, M., Kuwabara, M., Katare, R. G., Okudela, K., Kobayashi, M., et al. (2005). Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1alpha. FEBS Letters, 579, 2111–2118.

    Article  PubMed  CAS  Google Scholar 

  33. Chaanine, A. H., & Hajjar, R. J. (2011). AKT signalling in the failing heart. European Journal of Heart Failure, 13, 825–829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Uemura, K., Zheng, C., Li, M., Kawada, T., & Sugimachi, M. (2010). Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction. Journal of Cardiac Failure, 16, 689–699.

    Article  PubMed  Google Scholar 

  35. Mioni, C., Bazzani, C., Giuliani, D., Altavilla, D., Leone, S., Ferrari, A., et al. (2005). Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Critical Care Medicine, 33, 2621–2628.

    Article  PubMed  CAS  Google Scholar 

  36. Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 74, 1124–1136.

    Article  PubMed  CAS  Google Scholar 

  37. Krieg, T., Qin, Q., Philipp, S., Alexeyev, M. F., Cohen, M. V., & Downey, J. M. (2004). Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. American Journal of Physiology - Heart and Circulatory Physiology, 287, H2606–H2611.

    Article  PubMed  CAS  Google Scholar 

  38. Crimi, G., Pica, S., Raineri, C., Bramucci, E., De Ferrari, G. M., Klersy, C., et al. (2013). Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. JACC. Cardiovascular Interventions, 6, 1055–1063.

    Article  PubMed  Google Scholar 

  39. Donato, M., Buchholz, B., Rodríguez, M., Pérez, V., Inserte, J., García-Dorado, D., et al. (2013). Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Experimental Physiology, 98, 425–434.

    Article  PubMed  Google Scholar 

  40. Shanmuganathan, S., Hausenloy, D. J., Duchen, M. R., & Yellon, D. M. (2005). Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. American Journal of Physiology - Heart and Circulatory Physiology, 289, H237–H242.

    Article  PubMed  CAS  Google Scholar 

  41. Katare, R. G., Ando, M., Kakinuma, Y., Arikawa, M., Handa, T., Yamasaki, F., et al. (2009). Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. Journal of Thoracic and Cardiovascular Surgery, 137, 223–231.

    Article  PubMed  CAS  Google Scholar 

  42. Calvillo, L., Vanoli, E., Andreoli, E., Besana, A., Omodeo, E., Gnecchi, M., et al. (2011). Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. Journal of Cardiovascular Pharmacology, 58, 500–507.

    Article  PubMed  CAS  Google Scholar 

  43. Zhao, M., He, X., Bi, X. Y., Yu, X. J., Gil Wier, W., & Zang, W. J. (2013). Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Research in Cardiology, 10, 345.

    Article  CAS  Google Scholar 

  44. Shinlapawittayatorn, K., Chinda, K., Palee, S., Surinkaew, S., Thunsiri, K., Weerateerangkul, P., et al. (2013). Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm, 10(11), 1700–1707.

    Article  PubMed  Google Scholar 

  45. Li, M., Zheng, C., Sato, T., Kawada, T., Sugimachi, M., & Sunagawa, K. (2004). Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation, 109, 120–124.

    Article  PubMed  Google Scholar 

  46. Zhang, Y., Popovic, Z. B., Bibevski, S., Fakhry, I., Sica, D. A., Van Wagoner, D. R., et al. (2009). Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circulation. Heart Failure, 2, 692–699.

    Article  PubMed  CAS  Google Scholar 

  47. Sabbah, H. N., Stein, P. D., Kono, T., Gheorghiade, M., Levine, T. B., Jafri, S., et al. (1991). A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. American Journal of Physiology, 260, H1379–H1384.

    PubMed  CAS  Google Scholar 

  48. Sabbah, H. N., Ilsar, I., Zaretsky, A., Rastogi, S., Wang, M., & Gupta, R. C. (2011). Vagus nerve stimulation in experimental heart failure. Heart Failure Reviews, 16, 171–178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hamann, J. J., Ruble, S. B., Stolen, C., Wang, M., Gupta, R. C., Rastogi, S., et al. (2013). Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. European Journal of Heart Failure, 15, 1319–1326.

    Article  PubMed  Google Scholar 

  50. Olshansky, B., Sabbah, H. N., Hauptman, P. J., & Colucci, W. S. (2008). Parasympathetic nervous system and heart failure. Pathophysiology and potential implications for therapy. Circulation, 118, 863–871.

    Article  PubMed  Google Scholar 

  51. De Ferrari, G. M., & Schwartz, P. J. (2011). Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Failure Reviews, 16, 195–203.

    Article  PubMed  Google Scholar 

  52. De Ferrari, G. M., Vanoli, E., & Schwartz, P. J. (1994). Vagal activity and ventricular fibrillation. In M. N. Levy & P. J. Schwartz (Eds.), Vagal control of the heart: experimental basis and clinical implications (pp. 613–636). Armonk: Futura.

    Google Scholar 

  53. Böhm, M., Swedberg, K., Komajda, M., Borer, J. S., Ford, I., Dubost-Brama, A., et al. (2010). Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet, 376, 886–894.

    Article  PubMed  Google Scholar 

  54. Lechat, P., Hulot J-S Escolano, S., Mallet, A., Leizorovicz, A., Werhlen-Grandjean, M., Pochmalicki, G., et al. (2001). Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation, 103, 1428–1433.

    Article  PubMed  CAS  Google Scholar 

  55. Swedberg, K., Komajda, M., Bo¨hm, M., Borer, J. S., Ford, I., Dubost- Brama, A., et al. (2010). Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet, 376, 875–885.

    Article  PubMed  CAS  Google Scholar 

  56. Schwartz, P. J., Pagani, M., Lombardi, F., Malliani, A., & Brown, A. M. (1973). A cardiocardiac sympathovagal reflex in the cat. Circulation Research, 32, 215–220.

    Article  PubMed  CAS  Google Scholar 

  57. De Ferrari, G. M., Vanoli, E., & Schwartz, P. J. (1995). Cardiac vagal activity, myocardial ischemia and sudden death. In D. P. Zipes & J. Jalife (Eds.), Cardiac electrophysiology. From cell to bedside (IIth ed., pp. 422–434). Philadelphia: Saunders.

    Google Scholar 

  58. Mancia, G., Romero, J. C., & Shepherd, J. T. (1975). Continuous inhibition of rennin release in dogs by vagally innervated receptors in the cardiopulmonary region. Circulation Research, 36, 529–535.

    Article  PubMed  CAS  Google Scholar 

  59. Elsner, D., Kromer, E. P., & Riegger, G. A. (1990). Effects of vagal blockade on neurohumoral systems in conscious dogs with heart failure. Journal of Cardiovascular Pharmacology, 15, 586–591.

    Article  PubMed  CAS  Google Scholar 

  60. Tsutsumi, T., Ide, T., Yamato, M., Kudou, W., Andou, M., Hirooka, Y., et al. (2008). Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction. Cardiovascular Research, 77, 713–721.

    Article  PubMed  CAS  Google Scholar 

  61. Lu, X., Costantini, T., Lopez, N. E., Wolf, P. L., Hageny, A. M., Putnam, J., et al. (2013). Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model. Journal of Cellular and Molecular Medicine, 17, 664–671.

    Article  PubMed  CAS  Google Scholar 

  62. Tracey, K. J. (2002). The inflammatory reflex. Nature, 420, 853–859.

    Article  PubMed  CAS  Google Scholar 

  63. Li, W., & Olshansky, B. (2011). Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart Failure Reviews, 16, 137–145.

    Article  PubMed  CAS  Google Scholar 

  64. Sloan, R. P., McCreath, H., Tracey, K. J., Sidney, S., Liu, K., & Seeman, T. (2007). RR interval variability is inversely related to inflammatory markers: the CARDIA study. Molecular Medicine, 13, 178–184.

    PubMed  PubMed Central  Google Scholar 

  65. Bo, H., Zhibing, L., & Jiang, H. (2013). Atrial ganglionated plexi stimulation may be an effective therapeutic tool for the treatment of heart failure. Medical Hypotheses, 81, 905–907.

    Article  Google Scholar 

  66. Kong, S. S., Liu, J. J., Hwang, T. C., Yu, X. J., Zhao, M., Zhao, M., et al. (2013). Optimizing the parameters of vagus nerve stimulation by uniform design in rats with acute myocardial infarction. PLoS ONE, 7, e42799.

    Article  CAS  Google Scholar 

  67. Ardell, J. L., Nier, H., Ardell, C. L., Amurthur, B., Beaumont, E., Southerland, E. M., et al. (2013). Optimum heart rate response to autonomic regulation therapy is frequency dependent. Circulation (Abstract Suppl), 128, A15586.

    Google Scholar 

  68. Ben-Menachem, E. (2001). Vagus nerve stimulation, side effects, and long-term safety. Journal of Clinical Neurophysiology, 18, 415–418.

    Article  PubMed  CAS  Google Scholar 

  69. Schachter, S. C. (2002). Vagus nerve stimulation therapy summary: five years after FDA approval. Neurology, 59, S15–S20.

    Article  PubMed  Google Scholar 

  70. Schwartz, P. J., De Ferrari, G. M., Sanzo, A., Landolina, M., Rordorf, R., Raineri, C., et al. (2008). Long term vagal stimulation in patients with advanced heart failure: first experience in man. European Journal of Heart Failure, 10, 884–891.

    Article  PubMed  Google Scholar 

  71. De Ferrari, G. M., Crijins, H. J., Borggrefe, M., Milasinovic, G., Smid, J., Zabel, M., et al. (2011). Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. European Heart Journal, 32, 847–855.

    Article  PubMed  CAS  Google Scholar 

  72. Dennert, R., Crijns, H. J. G. M., Smid, J., Klein, H., Gavazzi, A., Raspopovic, S., et al. (2012). Long-term benefits of vagal nerve stimulation therapy in heart failure. Circulation (Abstract Suppl.), 126, A17001.

    Google Scholar 

  73. Hauptman, P. J., Schwartz, P. J., Gold, M. R., Borggrefe, M., Van Veldhuisen, D. J., Starling, R. C., et al. (2012). Rationale and study design of the increase of vagal tone in heart failure study: INOVATE-HF. American Heart Journal, 163, 954–962.e1.

    Article  PubMed  Google Scholar 

  74. De Ferrari, G. M., Tuinenburg, A., Ruble, S. B., Brugada, J., Klein, H., Butter, C., et al. (2014) Of rationale and study design of the NEuroCardiac TherApy foR Heart Failure study: NECTAR-HF. European Journal of Heart Failure. in press.

  75. DiCarlo, L., Libbus, I., Amurthur, B., Kenknight, B. H., & Anand, I. S. (2013). Autonomic regulation therapy for the improvement of left ventricular function and heart failure symptoms: the ANTHEM-HF study. Journal of Cardiac Failure, 19, 655–660.

    Article  PubMed  Google Scholar 

  76. Anholt, T. A., Ayal, S., & Goldberg, J. A. (2011). Recruitment and blocking properties of the CardioFit stimulation lead. Journal of Neural Engineering, 8, 034004. doi:10.1088/1741-2560/8/3/034004.

    Article  PubMed  Google Scholar 

  77. Yoo, P. B., Lubock, N. B., Hincapie, J. G., Ruble, S. B., Hamann, J. J., & Grill, W. M. (2013). High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog. Journal of Neural Engineering, 10, 026003. doi:10.1088/1741-2560/10/2/026003.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Dr. De Ferrari receives fees for his role as a Member of the Steering Committee of the NECTAR-HF trial supported by Boston Scientific. He received compensation from BioControl for his role as a consultant and as a member of the Steering Committee of the CardioFit Multicentre Study until 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano M. De Ferrari.

Additional information

Associate Editor Craig Stolen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Ferrari, G.M. Vagal Stimulation in Heart Failure. J. of Cardiovasc. Trans. Res. 7, 310–320 (2014). https://doi.org/10.1007/s12265-014-9540-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9540-1

Keywords