Abstract
Heart failure (HF) is accompanied by an autonomic imbalance that is almost always characterized by both increased sympathetic activity and withdrawal of vagal activity. Experimentally, vagal stimulation has been shown to exert profound antiarrhythmic activity and to improve cardiac function and survival in HF models. A open-label pilot clinical study in 32 patients with chronic HF has shown safety and tolerability of chronic vagal stimulation associated with subjective (improved quality of life and 6-min walk test) and objective improvements (reduced left ventricular systolic volumes and improved left ventricular ejection fraction). Three larger clinical studies, including a phase III trial are currently ongoing and will evaluate the clinical role of this new approach.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Brack, K. E., Winter, J., & Ng, G. A. (2013). Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation-tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Failure Reviews, 18, 389–408.
Floras, J. S. (2009). Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. Journal of the American College of Cardiology, 54, 375–385.
Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., Ganiats, T. G., et al. (2009). 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 119, e391–e479.
Billman, G. E., Schwartz, P. J., & Stone, H. L. (1982). Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation, 66, 874–880.
Schwartz, P. J., Vanoli, E., Stramba Badiale, M., De Ferrari, G., Billman, G. E., & Foreman, R. D. (1988). Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation, 78, 969–979.
Kleiger, R. E., Miller, J. P., Bigger, J. T., Jr., Moss, A. J., & the Multicenter Post Infarction Research Group. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. American Journal of Cardiology, 59, 256–262.
La Rovere, M. T., Bigger, J. T., Marcus, F., Mortara, A., & Schwartz, P. J. (1998). ATRAMI (autonomic tone and reflexes after myocardial infarction), baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet, 351, 478–484.
Schmidt, G., Malik, M., Barthel, P., Schneider, R., Ulm, K., Rolnitzky, L., et al. (1999). Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet, 353, 1390–1396.
De Ferrari, G. M., Sanzo, A., Bertoletti, A., Specchia, G., Vanoli, E., & Schwartz, P. J. (2007). Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. Journal of the American College of Cardiology, 50, 2285–2290.
Eckberg, D. L., Drabinsky, M., & Braunwald, E. (1971). Defective cardiac parasympathetic control in patients with heart disease. New England Journal of Medicine, 285, 877–883.
Ferguson, D. W., Berg, W. J., Roach, P. J., Oren, R. M., & Mark, A. L. (1992). Effects of heart failure on baroreflex control of sympathetic neural activity. American Journal of Cardiology, 69, 523–531.
Dibner Dunlap, M. E., Smith, M. L., Kinugawa, T., & Thames, M. D. (1996). Enalapatrilat augments arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in patients with heart failure. Journal of the American College of Cardiology, 27, 358–364.
Dibner Dunlap, M. E. (1992). Arterial or cardiopulmonary baroreflex control of sympathetic nerve activity in heart failure? American Journal of Cardiology, 70, 1640–1642.
Bibevski, S., & Dunlap, M. E. (2011). Evidence for impaired vagus nerve activity in heart failure. Heart Failure Reviews, 16, 129–135.
Mortara, A., La Rovere, M. T., Pinna, G. D., Prpa, A., Maestri, R., Febo, O., et al. (1997). Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation, 96, 3450–3458.
La Rovere, M. T., Pinna, G. D., Maestri, R., Robbi, E., Caporotondi, A., Guazzotti, G., et al. (2009). Prognostic implications of baroreflex senstivity in heart failure patients in the beta-blocking era. Journal of the American College of Cardiology, 53, 193–199.
Adamson, P. B., Smith, A. L., Abraham, W. T., Kleckner, K. J., Stadler, R. W., Shih, A., et al. (2004). Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization device. Circulation, 110, 2389–2394.
Einbrodt (1859) Ueber Herzreizung und ihr Verhaeltnis zum Blutdruck. Akademie der Wissenschaften (Vienna). Sitzungsberichte 38:345
Yoon, M. S., Han, J., Tse, W. W., & Rogers, R. (1977). Effects of vagal stimulation, atropine, and propranolol on fibrillation threshold of normal and ischemic ventricles. American Heart Journal, 93, 60–65.
Kolman, B. S., Verrier, R. L., & Lown, B. (1975). The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of the sympathetic-parasympathetic interactions. Circulation, 52, 578–585.
Scherlag, B. J., Helfant, R. H., Haft, J. I., & Damato, A. N. (1970). Electrophysiology underlying ventricular arrhythmias due to coronary ligation. American Journal of Physiology, 219, 1665–1671.
Kent, K. M., Smith, E. R., Redwood, D. R., & Epstein, S. E. (1973). Electrical stability of acutely ischemic myocardium: influences of heart rate and vagal stimulation. Circulation, 47, 291–298.
Myers, R. W., Pearlman, A. S., Hyman, R. M., Goldstein, R. A., Kent, K. M., Goldstein, R. E., et al. (1974). Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation, 49, 943–947.
Yoon, M. S., Fondacaro, J. D., & Han, J. (1978). Effects of vagal stimulation and atropine on ventricular arrhythmias during acute coronary occlusion. Journal of Electrocardiology, 11, 27–31.
De Ferrari, G. M., Vanoli, E., Stramba-Badiale, M., Hull, S. S., Jr., Foreman, R. D., & Schwartz, P. J. (1991). Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with a healed myocardial infarction. American Journal of Physiology, 261, H63–H69.
Vanoli, E., De Ferrari, G. M., Stramba-Badiale, M., Hull, S. S., Jr., Foreman, R. D., & Schwartz, P. J. (1991). Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circulation Research, 68, 1471–1481.
De Ferrari, G. M., Salvati, P., Grossoni, M., Ukmar, G., Vaga, L., Patrono, C., et al. (1993). Pharmacologic modulation of the autonomic nervous system in the prevention of sudden cardiac death. A study with propranolol, methacholine and oxotremorine in conscious dogs with a healed myocardial infarction. Journal of the American College of Cardiology, 22, 283–290.
Ando, M., Katare, R. G., Kakinuma, Y., Zhang, D., Yamasaki, F., Muramoto, K., et al. (2005). Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation, 112, 164–170.
Murdock, D. K., Loeb, J. M., Euler, D. E., & Randall, W. C. (1980). Electrophysiology of coronary reperfusion. A mechanism for reperfusion arrhythmias. Circulation, 61, 175–182.
Zuanetti, G., De Ferrari, G. M., Priori, S. G., & Schwartz, P. J. (1987). Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circulation Research, 61, 429–435.
Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. New England Journal of Medicine, 357, 1121–1135.
Kakinuma, Y., Ando, M., Kuwabara, M., Katare, R. G., Okudela, K., Kobayashi, M., et al. (2005). Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1alpha. FEBS Letters, 579, 2111–2118.
Chaanine, A. H., & Hajjar, R. J. (2011). AKT signalling in the failing heart. European Journal of Heart Failure, 13, 825–829.
Uemura, K., Zheng, C., Li, M., Kawada, T., & Sugimachi, M. (2010). Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction. Journal of Cardiac Failure, 16, 689–699.
Mioni, C., Bazzani, C., Giuliani, D., Altavilla, D., Leone, S., Ferrari, A., et al. (2005). Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Critical Care Medicine, 33, 2621–2628.
Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 74, 1124–1136.
Krieg, T., Qin, Q., Philipp, S., Alexeyev, M. F., Cohen, M. V., & Downey, J. M. (2004). Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. American Journal of Physiology - Heart and Circulatory Physiology, 287, H2606–H2611.
Crimi, G., Pica, S., Raineri, C., Bramucci, E., De Ferrari, G. M., Klersy, C., et al. (2013). Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. JACC. Cardiovascular Interventions, 6, 1055–1063.
Donato, M., Buchholz, B., Rodríguez, M., Pérez, V., Inserte, J., García-Dorado, D., et al. (2013). Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Experimental Physiology, 98, 425–434.
Shanmuganathan, S., Hausenloy, D. J., Duchen, M. R., & Yellon, D. M. (2005). Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. American Journal of Physiology - Heart and Circulatory Physiology, 289, H237–H242.
Katare, R. G., Ando, M., Kakinuma, Y., Arikawa, M., Handa, T., Yamasaki, F., et al. (2009). Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. Journal of Thoracic and Cardiovascular Surgery, 137, 223–231.
Calvillo, L., Vanoli, E., Andreoli, E., Besana, A., Omodeo, E., Gnecchi, M., et al. (2011). Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. Journal of Cardiovascular Pharmacology, 58, 500–507.
Zhao, M., He, X., Bi, X. Y., Yu, X. J., Gil Wier, W., & Zang, W. J. (2013). Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Research in Cardiology, 10, 345.
Shinlapawittayatorn, K., Chinda, K., Palee, S., Surinkaew, S., Thunsiri, K., Weerateerangkul, P., et al. (2013). Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm, 10(11), 1700–1707.
Li, M., Zheng, C., Sato, T., Kawada, T., Sugimachi, M., & Sunagawa, K. (2004). Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation, 109, 120–124.
Zhang, Y., Popovic, Z. B., Bibevski, S., Fakhry, I., Sica, D. A., Van Wagoner, D. R., et al. (2009). Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circulation. Heart Failure, 2, 692–699.
Sabbah, H. N., Stein, P. D., Kono, T., Gheorghiade, M., Levine, T. B., Jafri, S., et al. (1991). A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. American Journal of Physiology, 260, H1379–H1384.
Sabbah, H. N., Ilsar, I., Zaretsky, A., Rastogi, S., Wang, M., & Gupta, R. C. (2011). Vagus nerve stimulation in experimental heart failure. Heart Failure Reviews, 16, 171–178.
Hamann, J. J., Ruble, S. B., Stolen, C., Wang, M., Gupta, R. C., Rastogi, S., et al. (2013). Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. European Journal of Heart Failure, 15, 1319–1326.
Olshansky, B., Sabbah, H. N., Hauptman, P. J., & Colucci, W. S. (2008). Parasympathetic nervous system and heart failure. Pathophysiology and potential implications for therapy. Circulation, 118, 863–871.
De Ferrari, G. M., & Schwartz, P. J. (2011). Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Failure Reviews, 16, 195–203.
De Ferrari, G. M., Vanoli, E., & Schwartz, P. J. (1994). Vagal activity and ventricular fibrillation. In M. N. Levy & P. J. Schwartz (Eds.), Vagal control of the heart: experimental basis and clinical implications (pp. 613–636). Armonk: Futura.
Böhm, M., Swedberg, K., Komajda, M., Borer, J. S., Ford, I., Dubost-Brama, A., et al. (2010). Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet, 376, 886–894.
Lechat, P., Hulot J-S Escolano, S., Mallet, A., Leizorovicz, A., Werhlen-Grandjean, M., Pochmalicki, G., et al. (2001). Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation, 103, 1428–1433.
Swedberg, K., Komajda, M., Bo¨hm, M., Borer, J. S., Ford, I., Dubost- Brama, A., et al. (2010). Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet, 376, 875–885.
Schwartz, P. J., Pagani, M., Lombardi, F., Malliani, A., & Brown, A. M. (1973). A cardiocardiac sympathovagal reflex in the cat. Circulation Research, 32, 215–220.
De Ferrari, G. M., Vanoli, E., & Schwartz, P. J. (1995). Cardiac vagal activity, myocardial ischemia and sudden death. In D. P. Zipes & J. Jalife (Eds.), Cardiac electrophysiology. From cell to bedside (IIth ed., pp. 422–434). Philadelphia: Saunders.
Mancia, G., Romero, J. C., & Shepherd, J. T. (1975). Continuous inhibition of rennin release in dogs by vagally innervated receptors in the cardiopulmonary region. Circulation Research, 36, 529–535.
Elsner, D., Kromer, E. P., & Riegger, G. A. (1990). Effects of vagal blockade on neurohumoral systems in conscious dogs with heart failure. Journal of Cardiovascular Pharmacology, 15, 586–591.
Tsutsumi, T., Ide, T., Yamato, M., Kudou, W., Andou, M., Hirooka, Y., et al. (2008). Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction. Cardiovascular Research, 77, 713–721.
Lu, X., Costantini, T., Lopez, N. E., Wolf, P. L., Hageny, A. M., Putnam, J., et al. (2013). Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model. Journal of Cellular and Molecular Medicine, 17, 664–671.
Tracey, K. J. (2002). The inflammatory reflex. Nature, 420, 853–859.
Li, W., & Olshansky, B. (2011). Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart Failure Reviews, 16, 137–145.
Sloan, R. P., McCreath, H., Tracey, K. J., Sidney, S., Liu, K., & Seeman, T. (2007). RR interval variability is inversely related to inflammatory markers: the CARDIA study. Molecular Medicine, 13, 178–184.
Bo, H., Zhibing, L., & Jiang, H. (2013). Atrial ganglionated plexi stimulation may be an effective therapeutic tool for the treatment of heart failure. Medical Hypotheses, 81, 905–907.
Kong, S. S., Liu, J. J., Hwang, T. C., Yu, X. J., Zhao, M., Zhao, M., et al. (2013). Optimizing the parameters of vagus nerve stimulation by uniform design in rats with acute myocardial infarction. PLoS ONE, 7, e42799.
Ardell, J. L., Nier, H., Ardell, C. L., Amurthur, B., Beaumont, E., Southerland, E. M., et al. (2013). Optimum heart rate response to autonomic regulation therapy is frequency dependent. Circulation (Abstract Suppl), 128, A15586.
Ben-Menachem, E. (2001). Vagus nerve stimulation, side effects, and long-term safety. Journal of Clinical Neurophysiology, 18, 415–418.
Schachter, S. C. (2002). Vagus nerve stimulation therapy summary: five years after FDA approval. Neurology, 59, S15–S20.
Schwartz, P. J., De Ferrari, G. M., Sanzo, A., Landolina, M., Rordorf, R., Raineri, C., et al. (2008). Long term vagal stimulation in patients with advanced heart failure: first experience in man. European Journal of Heart Failure, 10, 884–891.
De Ferrari, G. M., Crijins, H. J., Borggrefe, M., Milasinovic, G., Smid, J., Zabel, M., et al. (2011). Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. European Heart Journal, 32, 847–855.
Dennert, R., Crijns, H. J. G. M., Smid, J., Klein, H., Gavazzi, A., Raspopovic, S., et al. (2012). Long-term benefits of vagal nerve stimulation therapy in heart failure. Circulation (Abstract Suppl.), 126, A17001.
Hauptman, P. J., Schwartz, P. J., Gold, M. R., Borggrefe, M., Van Veldhuisen, D. J., Starling, R. C., et al. (2012). Rationale and study design of the increase of vagal tone in heart failure study: INOVATE-HF. American Heart Journal, 163, 954–962.e1.
De Ferrari, G. M., Tuinenburg, A., Ruble, S. B., Brugada, J., Klein, H., Butter, C., et al. (2014) Of rationale and study design of the NEuroCardiac TherApy foR Heart Failure study: NECTAR-HF. European Journal of Heart Failure. in press.
DiCarlo, L., Libbus, I., Amurthur, B., Kenknight, B. H., & Anand, I. S. (2013). Autonomic regulation therapy for the improvement of left ventricular function and heart failure symptoms: the ANTHEM-HF study. Journal of Cardiac Failure, 19, 655–660.
Anholt, T. A., Ayal, S., & Goldberg, J. A. (2011). Recruitment and blocking properties of the CardioFit stimulation lead. Journal of Neural Engineering, 8, 034004. doi:10.1088/1741-2560/8/3/034004.
Yoo, P. B., Lubock, N. B., Hincapie, J. G., Ruble, S. B., Hamann, J. J., & Grill, W. M. (2013). High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog. Journal of Neural Engineering, 10, 026003. doi:10.1088/1741-2560/10/2/026003.
Disclosures
Dr. De Ferrari receives fees for his role as a Member of the Steering Committee of the NECTAR-HF trial supported by Boston Scientific. He received compensation from BioControl for his role as a consultant and as a member of the Steering Committee of the CardioFit Multicentre Study until 2009.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Craig Stolen oversaw the review of this article.
Rights and permissions
About this article
Cite this article
De Ferrari, G.M. Vagal Stimulation in Heart Failure. J. of Cardiovasc. Trans. Res. 7, 310–320 (2014). https://doi.org/10.1007/s12265-014-9540-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12265-014-9540-1