Skip to main content

Advertisement

Log in

EMT-Inducing Biomaterials for Heart Valve Engineering: Taking Cues from Developmental Biology

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Although artificial prostheses for diseased heart valves have been around for several decades, viable heart valve replacements have yet to be developed due to their complicated nature. The majority of research in heart valve replacement technology seeks to improve decellularization techniques for porcine valves or bovine pericardium as an effort to improve current clinically used valves. The drawback of clinically used valves is that they are nonviable and thus do not grow or remodel once implanted inside patients. This is particularly detrimental for pediatric patients, who will likely need several reoperations over the course of their lifetimes to implant larger valves as the patient grows. Due to this limitation, additional biomaterials, both synthetic and natural in origin, are also being investigated as novel scaffolds for tissue-engineered heart valves, specifically for the pediatric population. Here, we provide a brief overview of valves in clinical use as well as of the materials being investigated as novel tissue-engineered heart valve scaffolds. Additionally, we focus on natural-based biomaterials for promoting cell behavior that is indicative of the developmental biology process that occurs in the formation of heart valves in utero, such as epithelial-to-mesenchymal transition or transformation. By engineering materials that promote native developmental biology cues and signaling, while also providing mechanical integrity once implanted, a viable tissue-engineered heart valve may one day be realized. A viable tissue-engineered heart valve, capable of growing and remodeling actively inside a patient, could reduce risks and complications associated with current valve replacement options and improve overall quality of life in the thousands of patients who received such valves each year, particularly for children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMP2:

Bone morphogenic protein 2

ES:

Electrospun

EPC:

Endothelial/epithelial progenitor cell

EMT:

Epithelial-to-mesenchymal transition or transformation

ePTFE:

Expanded poly(tetraflouroethylene)

ECM:

Extracellular matrix

FDM:

Fused deposition modeling

GAG:

Glycosaminoglycan

HA:

Hyaluronic acid

MMP:

Matrix metalloproteinase

MSC:

Mesenchymal stem cell

MEKK3:

Mitogen-activated protein 3 kinase

PEUU:

Poly(ester urea urethane)

PEG:

Poly(ethylene glycol)

PGS:

Poly(glycerol sebacate)

PGA:

Poly(glycolic acid)

PLA:

Poly(lactic acid)

P4HB:

Poly-4-hyrdoxybutyrate

PCL:

Polycaprolactone

PCU:

Polycarbonate

PDO:

Polydioxaneone

POSS:

Polyhedral oligomeric silsesquioxanes

TPU:

Thermoplastic polyurethane

TGF-β1:

Transforming growth factor β1

TGF-β2:

Transforming growth factor β2

VEC:

Valvular endothelial cell

VIC:

Valvular interstitial cell

VEGF:

Vascular endothelial growth factor

References

  1. Aikawa, E., et al. (2006). Human semilunar cardiac valve remodeling by activated cells from fetus to adult: Implications for postnatal adaptation, pathology, and tissue engineering. Circulation, 113(10), 1344–1352.

    Article  PubMed  Google Scholar 

  2. Appleton, A. J., et al. (2009). Vascular smooth muscle cells as a valvular interstitial cell surrogate in heart valve tissue engineering. Tissue Engineering. Part A, 15(12), 3889–3897.

    Article  PubMed  CAS  Google Scholar 

  3. Apte, S. S., et al. (2011). Current developments in the tissue engineering of autologous heart valves: Moving towards clinical use. Future Cardiology, 7(1), 77–97.

    Article  PubMed  Google Scholar 

  4. Armstrong, E. J., & Bischoff, J. (2004). Heart valve development—Endothelial cell signaling and differentiation. Circulation Research, 95(5), 459–470.

    Article  PubMed  CAS  Google Scholar 

  5. Barnett, J. V., & Desgrosellier, J. S. (2003). Early events in valvulogenesis: A signaling perspective. Birth Defects Research. Part C, Embryo Today, 69(1), 58–72.

    Article  CAS  Google Scholar 

  6. Bechtel, J. E. M., Stierle, U., & Sievers, H. H. (2008). Fifty-two months’ mean follow up of decellularized SynerGraft (TM)-treated pulmonary valve allografts. The Journal of Heart Valve Disease, 17(1), 98–104.

    PubMed  Google Scholar 

  7. Bechtel, J. F., et al. (2003). Evaluation of the decellularized pulmonary valve homograft (SynerGraft). The Journal of Heart Valve Disease, 12(6), 734–739. discussion 739–40.

    PubMed  Google Scholar 

  8. Benton, J. A., Fairbanks, B. D., & Anseth, K. S. (2009). Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials, 30(34), 6593–6603.

    Article  PubMed  CAS  Google Scholar 

  9. Benton, J. A., Kern, H. B., & Anseth, K. S. (2008). Substrate properties influence calcification in valvular interstitial cell culture. The Journal of Heart Valve Disease, 17(6), 689–699.

    PubMed  Google Scholar 

  10. Benton, J. A., et al. (2009). Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Engineering. Part A, 15(11), 3221–3230.

    Article  PubMed  CAS  Google Scholar 

  11. Bjork, V. O., Henze, A., & Hindmarsh, T. (1977). Radiopaque marker in the tilting disc of the Bjork-Shiley heart valve. Evaluation of in vivo prosthetic valve function by cineradiography. The Journal of Thoracic and Cardiovascular Surgery, 73(4), 563–569.

    PubMed  CAS  Google Scholar 

  12. Booth, C., et al. (2002). Tissue engineering of cardiac valve prostheses I: Development and histological characterization of an acellular porcine scaffold. The Journal of Heart Valve Disease, 11(4), 457–462.

    PubMed  Google Scholar 

  13. Bouten, C. V., et al. (2011). Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev, 63, 221–241.

    Article  PubMed  CAS  Google Scholar 

  14. Brigham, M. D., et al. (2009). Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Engineering. Part A, 15(7), 1645–1653.

    Article  PubMed  CAS  Google Scholar 

  15. Butcher, J. T., Mahler, G. J., & Hockaday, L. A. (2011). Aortic valve disease and treatment: The need for naturally engineered solutions. Adv Drug Deliv Rev, 63, 242–268.

    Article  PubMed  CAS  Google Scholar 

  16. Butler, D.L., et al. (2004). Functional tissue engineering parameters toward designing repair and replacement strategies. Clin Orthop Relat Res, (427 Suppl), p. S190-9.

    Google Scholar 

  17. Camenisch, T. D., et al. (2000). Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. The Journal of Clinical Investigation, 106(3), 349–360.

    Article  PubMed  CAS  Google Scholar 

  18. Carpentier, A., et al. (1969). Biological factors affecting long-term results of valvular heterografts. The Journal of Thoracic and Cardiovascular Surgery, 58(4), 467–483.

    PubMed  CAS  Google Scholar 

  19. Cebotari, S., et al. (2006). Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation, 114(1 Suppl), I132–I137.

    PubMed  Google Scholar 

  20. Chen, R., et al. (2009). A novel approach via combination of electrospinning and FDM for tri-leaflet heart valve scaffold fabrication. Front. Mater, Sci, China, 3(4), 359–366.

    Article  CAS  Google Scholar 

  21. Chiu, Y. N., et al. (2010). Transforming growth factor beta, bone morphogenetic protein, and vascular endothelial growth factor mediate phenotype maturation and tissue remodeling by embryonic valve progenitor cells: Relevance for heart valve tissue engineering. Tissue Engineering. Part A, 16(11), 3375–3383.

    Article  PubMed  CAS  Google Scholar 

  22. Combs, M. D., & Yutzey, K. E. (2009). Heart valve development: Regulatory networks in development and disease. Circulation Research, 105(5), 408–421.

    Article  PubMed  CAS  Google Scholar 

  23. Courtney, T., et al. (2006). Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials, 27(19), 3631–3638.

    PubMed  CAS  Google Scholar 

  24. Cribier, A., et al. (2002). Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: First human case description. Circulation, 106(24), 3006–3008.

    Article  PubMed  Google Scholar 

  25. Del Gaudio, C., Bianco, A., & Grigioni, M. (2008). Electrospun bioresorbable trileaflet heart valve prosthesis for tissue engineering: In vitro functional assessment of a pulmonary cardiac valve design. Annali dell’Istituto Superiore di Sanità, 44(2), 178–186.

    PubMed  Google Scholar 

  26. Del Gaudio, C., et al. (2008). Electrospun bioresorbable heart valve scaffold for tissue engineering. The International Journal of Artificial Organs, 31(1), 68–75.

    PubMed  Google Scholar 

  27. Delaughter, D. M., et al. (2011). What chick and mouse models have taught us about the role of the endocardium in congenital heart disease. Birth Defects Res A Clin Mol Teratol, 91, 511–525.

    Article  PubMed  CAS  Google Scholar 

  28. Dellgren, G., et al. (2002). Late hemodynamic and clinical outcomes of aortic valve replacement with the Carpentier-Edwards Perimount pericardial bioprosthesis. The Journal of Thoracic and Cardiovascular Surgery, 124(1), 146–154.

    Article  PubMed  Google Scholar 

  29. Dohmen, P. M., & Konertz, W. (2009). Tissue-engineered heart valve scaffolds. Annals of Thoracic and Cardiovascular Surgery, 15(6), 362–367.

    PubMed  Google Scholar 

  30. Dohmen, P. M., et al. (2005). Results of a decellularized porcine heart valve implanted into the juvenile sheep model. The Heart Surgery Forum, 8(2), E100–E104. discussion E104.

    Article  PubMed  CAS  Google Scholar 

  31. Dohmen, P. M., et al. (2007). Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. The Annals of Thoracic Surgery, 84(3), 729–736.

    Article  PubMed  Google Scholar 

  32. Dumont, K., et al. (2002). Design of a new pulsatile bioreactor for tissue engineered aortic heart valve formation. Artificial Organs, 26(8), 710–714.

    Article  PubMed  Google Scholar 

  33. Dvorin, E. L., et al. (2003). Quantitative evaluation of endothelial progenitors and cardiac valve endothelial cells: Proliferation and differentiation on poly-glycolic acid/poly-4-hydroxybutyrate scaffold in response to vascular endothelial growth factor and transforming growth factor beta1. Tissue Engineering, 9(3), 487–493.

    Article  PubMed  CAS  Google Scholar 

  34. Elkins, R. (2003). Is Tissued-engineered Heart Vavle Replacement Clinically Applicable? Current Cardiology Reports, 5, 125–128.

    Article  PubMed  Google Scholar 

  35. Emery, R. W., Mettler, E., & Nicoloff, D. M. (1979). A new cardiac prosthesis: The St. Jude Medical cardiac valve: In vivo results. Circulation, 60(2 Pt 2), 48–54.

    PubMed  CAS  Google Scholar 

  36. Emery, R. W., & Nicoloff, D. M. (1979). St. Jude Medical cardiac valve prosthesis: In vitro studies. The Journal of Thoracic and Cardiovascular Surgery, 78(2), 269–276.

    PubMed  CAS  Google Scholar 

  37. Emery, R. W., et al. (1979). Clinical and hemodynamic results with the St. Jude medical aortic valve prosthesis. Surgical Forum, 30, 235–238.

    PubMed  CAS  Google Scholar 

  38. Engelmayr, G. C., Jr., et al. (2003). A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials, 24(14), 2523–2532.

    Article  PubMed  CAS  Google Scholar 

  39. Engelmayr, G. C., Jr., et al. (2008). A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology. Annals of Biomedical Engineering, 36(5), 700–712.

    Article  PubMed  Google Scholar 

  40. Erdbrugger, W., et al. (2006). Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Engineering, 12(8), 2059–2068.

    Article  PubMed  Google Scholar 

  41. Filova, E., et al. (2009). Tissue-engineered heart valves. Physiological Research, 58(Suppl 2), S141–S158.

    PubMed  Google Scholar 

  42. Flanagan, T. C., et al. (2006). A collagen-glycosaminoglycan co-culture model for heart valve tissue engineering applications. Biomaterials, 27(10), 2233–2246.

    Article  PubMed  CAS  Google Scholar 

  43. Flanagan, T. C., et al. (2007). The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials, 28(23), 3388–3397.

    Article  PubMed  CAS  Google Scholar 

  44. Flanagan, T. C., et al. (2009). In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Engineering. Part A, 15(10), 2965–2976.

    Article  PubMed  CAS  Google Scholar 

  45. Frank, B.S., et al. (2010). Determining cell seeding dosages for tissue engineering human pulmonary valves. J Surg Res. doi:10.1016/j.jss.2010.11.911.

  46. Goldstein, S., et al. (2000). Transpecies heart valve transplant: Advanced studies of a bioengineered xeno-autograft. The Annals of Thoracic Surgery, 70(6), 1962–1969.

    Article  PubMed  CAS  Google Scholar 

  47. Gottlieb, D., et al. (2010). In vivo monitoring of function of autologous engineered pulmonary valve. The Journal of Thoracic and Cardiovascular Surgery, 139(3), 723–731.

    Article  PubMed  Google Scholar 

  48. Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anat (Basel), 154(1), 8–20.

    Article  CAS  Google Scholar 

  49. Hayashida, K., et al. (2007). Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): Preparation of a prototype model. The Journal of Thoracic and Cardiovascular Surgery, 134(1), 152–159.

    Article  PubMed  Google Scholar 

  50. Hildebrand, D. K., et al. (2004). Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Annals of Biomedical Engineering, 32(8), 1039–1049.

    Article  PubMed  Google Scholar 

  51. Hinton, R. B., & Yutzey, K. E. (2010). Heart Valve Structure and Function in Development and Disease. Annu Rev Physiol, 73, 29–46.

    Article  CAS  Google Scholar 

  52. Hinton, R. B., Jr., et al. (2006). Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circulation Research, 98(11), 1431–1438.

    Article  PubMed  CAS  Google Scholar 

  53. Hjortnaes, J., et al. (2009). Translating autologous heart valve tissue engineering from bench to bed. Tissue Engineering. Part B, Reviews, 15(3), 307–317.

    Article  PubMed  CAS  Google Scholar 

  54. Hoerstrup, S. P., et al. (2000). New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Engineering, 6(1), 75–79.

    Article  PubMed  CAS  Google Scholar 

  55. Hoerstrup, S. P., et al. (2000). Functional living trileaflet heart valves grown in vitro. Circulation, 102(19 Suppl 3), III44–III49.

    PubMed  CAS  Google Scholar 

  56. Hoffman, J. I., & Kaplan, S. (2002). The incidence of congenital heart disease. Journal of the American College of Cardiology, 39(12), 1890–1900.

    Article  PubMed  Google Scholar 

  57. Hoffman-Kim, D., et al. (2005). Comparison of three myofibroblast cell sources for the tissue engineering of cardiac valves. Tissue Engineering, 11(1–2), 288–301.

    Article  PubMed  CAS  Google Scholar 

  58. Hong, H., et al. (2008). Fabrication of biomatrix/polymer hybrid scaffold for heart valve tissue engineering in vitro. ASAIO Journal, 54(6), 627–632.

    Article  PubMed  CAS  Google Scholar 

  59. Hong, H., et al. (2009). Fabrication of a novel hybrid heart valve leaflet for tissue engineering: An in vitro study. Artificial Organs, 33(7), 554–558.

    Article  PubMed  Google Scholar 

  60. Hopkins, R. A. (2005). Tissue engineering of heart valves: Decellularized valve scaffolds. Circulation, 111(21), 2712–2714.

    Article  PubMed  Google Scholar 

  61. Ingber, D. E., & Levin, M. (2007). What lies at the interface of regenerative medicine and developmental biology? Development, 134(14), 2541–2547.

    Article  PubMed  CAS  Google Scholar 

  62. Ingber, D. E., et al. (2006). Tissue engineering and developmental biology: Going biomimetic. Tissue Engineering, 12(12), 3265–3283.

    Article  PubMed  CAS  Google Scholar 

  63. Jockenhoevel, S., et al. (2001). Fibrin gel—Advantages of a new scaffold in cardiovascular tissue engineering. European Journal of Cardio-Thoracic Surgery, 19(4), 424–430.

    Article  PubMed  CAS  Google Scholar 

  64. Kalfa, D., et al. (2010). A polydioxanone electrospun valved patch to replace the right ventricular outflow tract in a growing lamb model. Biomaterials, 31(14), 4056–4063.

    Article  PubMed  CAS  Google Scholar 

  65. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial–mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.

    Article  PubMed  CAS  Google Scholar 

  66. Kidane, A. G., et al. (2009). A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomaterialia, 5(7), 2409–2417.

    Article  PubMed  CAS  Google Scholar 

  67. Kloxin, A. M., Benton, J. A., & Anseth, K. S. (2010). In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials, 31(1), 1–8.

    Article  PubMed  CAS  Google Scholar 

  68. Kloxin, A. M., Tibbitt, M. W., & Anseth, K. S. (2010). Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nature Protocols, 5(12), 1867–1887.

    Article  PubMed  CAS  Google Scholar 

  69. Kloxin, A. M., et al. (2009). Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science, 324(5923), 59–63.

    Article  PubMed  CAS  Google Scholar 

  70. Knight, R., & Collins, S. (2001). Human prion diseases: Cause, clinical and diagnostic aspects. Contributions to Microbiology, 7, 68–92.

    Article  PubMed  CAS  Google Scholar 

  71. Konertz, W., et al. (2005). Hemodynamic characteristics of the matrix P decellularized xenograft for pulmonary valve replacement during the Ross operation. The Journal of Heart Valve Disease, 14(1), 78–81.

    PubMed  Google Scholar 

  72. Kreger, S. T., & Voytik-Harbin, S. L. (2009). Hyaluronan concentration within a 3D collagen matrix modulates matrix viscoelasticity, but not fibroblast response. Matrix Biology, 28(6), 336–346.

    Article  PubMed  CAS  Google Scholar 

  73. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926.

    Article  PubMed  CAS  Google Scholar 

  74. Lenas, P., & Luyten, F. P. (2011). An emerging paradigm in tissue engineering: From chemical engineering to developmental engineering for bioartificial tissue formation through a series of unit operations that simulate the in vivo successive developmental stages. Industrial and Engineering Chemistry Research, 50(2), 482–522.

    Article  CAS  Google Scholar 

  75. Liao, J., Joyce, E. M., & Sacks, M. S. (2008). Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials, 29(8), 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  76. Markwald, R. R., et al. (2010). Developmental basis of adult cardiovascular diseases: Valvular heart diseases. Annals of the New York Academy of Sciences, 1188, 177–183.

    Article  PubMed  Google Scholar 

  77. Masters, K. S., et al. (2004). Designing scaffolds for valvular interstitial cells: Cell adhesion and function on naturally derived materials. Journal of Biomedical Materials Research. Part A, 71(1), 172–180.

    PubMed  Google Scholar 

  78. Masters, K. S., et al. (2005). Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials, 26(15), 2517–2525.

    Article  PubMed  CAS  Google Scholar 

  79. Mendelson, K., & Schoen, F. J. (2006). Heart valve tissue engineering: Concepts, approaches, progress, and challenges. Annals of Biomedical Engineering, 34(12), 1799–1819.

    Article  PubMed  Google Scholar 

  80. Merryman, W. D. (2008). Development of a tissue engineered heart valve for pediatrics: A case study in bioengineering ethics. Science and Engineering Ethics, 14(1), 93–101.

    Article  PubMed  Google Scholar 

  81. Merryman, W. D. (2010). Mechano-potential etiologies of aortic valve disease. Journal of Biomechanics, 43(1), 87–92.

    Article  Google Scholar 

  82. Merryman, W. D., et al. (2006). Correlation between heart valve interstitial cell stiffness and transvalvular pressure: Implications for collagen biosynthesis. American Journal of Physiology. Heart and Circulatory Physiology, 290(1), H224–H231.

    Article  PubMed  CAS  Google Scholar 

  83. Merryman, W. D., et al. (2006). Defining biomechanical endpoints for tissue engineered heart valve leaflets from native leaflet properties. Prog Pediat Cardiol, 21(2), 153–160.

    Article  Google Scholar 

  84. Merryman, W. D., et al. (2007). Differences in tissue-remodeling potential of aortic and pulmonary heart valve interstitial cells. Tissue Engineering, 13(9), 2281–2289.

    Article  PubMed  Google Scholar 

  85. Mol, A., et al. (2005). Tissue engineering of human heart valve leaflets: A novel bioreactor for a strain-based conditioning approach. Annals of Biomedical Engineering, 33(12), 1778–1788.

    Article  PubMed  Google Scholar 

  86. Murray, G. (1956). Homologous aortic-valve-segment transplants as surgical treatment for aortic and mitral insufficiency. Angiology, 7(5), 466–471.

    Article  PubMed  CAS  Google Scholar 

  87. Neuenschwander, S., & Hoerstrup, S. P. (2004). Heart valve tissue engineering. Transplant Immunology, 12(3–4), 359–365.

    Article  PubMed  CAS  Google Scholar 

  88. O’Brien, T. K., et al. (1984). Immunological reactivity to a new glutaraldehyde tanned bovine pericardial heart valve. Trans Am Soc Artif Intern Organs, 30, 440–444.

    PubMed  Google Scholar 

  89. O’Brien, M. F., et al. (1999). The SynerGraft valve: A new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Seminars in Thoracic and Cardiovascular Surgery, 11(4 Suppl 1), 194–200.

    PubMed  Google Scholar 

  90. Olivey, H. E., et al. (2006). Transforming growth factor-beta stimulates epithelial–mesenchymal transformation in the proepicardium. Developmental Dynamics, 235(1), 50–59.

    Article  PubMed  CAS  Google Scholar 

  91. Paruchuri, S., et al. (2006). Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2. Circulation Research, 99(8), 861–869.

    Article  PubMed  CAS  Google Scholar 

  92. Person, A. D., Klewer, S. E., & Runyan, R. B. (2005). Cell biology of cardiac cushion development. International Review of Cytology, 243, 287–335.

    Article  PubMed  CAS  Google Scholar 

  93. Ramamurthi, A., & Vesely, I. (2005). Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves. Biomaterials, 26(9), 999–1010.

    Article  PubMed  CAS  Google Scholar 

  94. Ramaswamy, S., et al. (2010). The role of organ level conditioning on the promotion of engineered heart valve tissue development in-vitro using mesenchymal stem cells. Biomaterials, 31(6), 1114–1125.

    Article  PubMed  CAS  Google Scholar 

  95. Reul, G. J., et al. (1985). Valve failure with the Ionescu-Shiley bovine pericardial bioprosthesis—Analysis of 2680 patients. Journal of Vascular Surgery, 2(1), 192–204.

    PubMed  Google Scholar 

  96. Riem Vis, P. W., et al. (2011). Environmental regulation of valvulogenesis: Implications for tissue engineering. European Journal of Cardio-Thoracic Surgery, 39(1), 8–17.

    Article  PubMed  Google Scholar 

  97. Robinson, P. S., et al. (2008). Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Engineering. Part A, 14(1), 83–95.

    Article  PubMed  CAS  Google Scholar 

  98. Rodriguez, K. J., Piechura, L. M., & Masters, K. S. (2011). Regulation of valvular interstitial cell phenotype and function by hyaluronic acid in 2-D and 3-D culture environments. Matrix Biology, 30(1), 70–82.

    Article  PubMed  CAS  Google Scholar 

  99. Ruel, J., & Lachance, G. (2009). A new bioreactor for the development of tissue-engineered heart valves. Annals of Biomedical Engineering, 37(4), 674–681.

    Article  PubMed  Google Scholar 

  100. Sacks, M. S., Merryman, W. D., & Schmidt, D. E. (2009). On the biomechanics of heart valve function. Journal of Biomechanics, 42(12), 1804–1824.

    Article  PubMed  Google Scholar 

  101. Sacks, M. S., Schoen, F. J., & Mayer, J. E. (2009). Bioengineering challenges for heart valve tissue engineering. Annual Review of Biomedical Engineering, 11, 289–313.

    Article  PubMed  CAS  Google Scholar 

  102. Sales, V. L., et al. (2010). Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. Tissue Engineering. Part A, 16(1), 257–267.

    Article  PubMed  CAS  Google Scholar 

  103. Samanek, M. (2000). Congenital heart malformations: Prevalence, severity, survival, and quality of life. Cardiology in the Young, 10(3), 179–185.

    Article  PubMed  CAS  Google Scholar 

  104. Sant, S., et al. (2011). Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. Journal of Tissue Engineering and Regenerative Medicine, 5(4), 283–291.

    Article  PubMed  CAS  Google Scholar 

  105. Schmidt, C. E., & Baier, J. M. (2000). Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomaterials, 21(22), 2215–2231.

    Article  PubMed  CAS  Google Scholar 

  106. Schmidt, D., et al. (2007). Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation, 116(11 Suppl), I64–I70.

    PubMed  Google Scholar 

  107. Schmidt, D., et al. (2010). Minimally-invasive implantation of living tissue engineered heart valves: A comprehensive approach from autologous vascular cells to stem cells. Journal of the American College of Cardiology, 56(6), 510–520.

    Article  PubMed  Google Scholar 

  108. Schoen, F.J. (2011). Heart valve tissue engineering: Quo vadis? Curr Opin Biotechnol. doi:10.1016/j.copbio.2011.01.004.

  109. Sha, J. M., et al. (2010). In-vitro seeding of human umbilical cord vein endothelial cells on hydroxyapatite for mechanical heart valve applications. The Journal of Heart Valve Disease, 19(4), 506–512.

    PubMed  Google Scholar 

  110. Shinoka, T., et al. (1995). Tissue engineering heart valves: Valve leaflet replacement study in a lamb model. The Annals of Thoracic Surgery, 60(6 Suppl), S513–S516.

    Article  PubMed  CAS  Google Scholar 

  111. Sierad, L. N., et al. (2010). Design and testing of a pulsatile conditioning system for dynamic endothelialization of polyphenol-stabilized tissue engineered heart valves. Cardiovascular Engineering and Technology, 1(2), 138–153.

    Article  PubMed  Google Scholar 

  112. Simon, P., et al. (2003). Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. European Journal of Cardio-Thoracic Surgery, 23(6), 1002–1006. discussion 1006.

    Article  PubMed  CAS  Google Scholar 

  113. Smith, S., et al. (2007). Force generation of different human cardiac valve interstitial cells: Relevance to individual valve function and tissue engineering. The Journal of Heart Valve Disease, 16(4), 440–446.

    PubMed  Google Scholar 

  114. Sodian, R., et al. (2000). Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Engineering, 6(2), 183–188.

    Article  PubMed  CAS  Google Scholar 

  115. Stankus, J. J., et al. (2006). Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials, 27(5), 735–744.

    Article  PubMed  CAS  Google Scholar 

  116. Steinhoff, G., et al. (2000). Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: In vivo restoration of valve tissue. Circulation, 102(19 Suppl 3), III50–III55.

    PubMed  CAS  Google Scholar 

  117. Stella, J. A., et al. (2008). Tissue-to-cellular level deformation coupling in cell micro-integrated elastomeric scaffolds. Biomaterials, 29(22), 3228–3236.

    Article  PubMed  CAS  Google Scholar 

  118. Stella, J. A., et al. (2010). On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomaterialia, 6(7), 2365–2381.

    Article  PubMed  Google Scholar 

  119. Stephens, E. H., et al. (2010). Age-related changes in material behavior of porcine mitral and aortic valves and correlation to matrix composition. Tissue Engineering. Part A, 16(3), 867–878.

    Article  PubMed  Google Scholar 

  120. Stevens, M. V., et al. (2008). MEKK3 initiates transforming growth factor beta 2-dependent epithelial-to-mesenchymal transition during endocardial cushion morphogenesis. Circulation Research, 103(12), 1430–1440.

    Article  PubMed  CAS  Google Scholar 

  121. Suri, S., & Schmidt, C. E. (2009). Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomaterialia, 5(7), 2385–2397.

    Article  PubMed  CAS  Google Scholar 

  122. Syedain, Z. H., Weinberg, J. S., & Tranquillo, R. T. (2008). Cyclic distension of fibrin-based tissue constructs: Evidence of adaptation during growth of engineered connective tissue. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6537–6542.

    Article  PubMed  CAS  Google Scholar 

  123. Tavakkol, Z., et al. (2005). Superior durability of SynerGraft pulmonary allografts compared with standard cryopreserved allografts. The Annals of Thoracic Surgery, 80(5), 1610–1614.

    Article  PubMed  Google Scholar 

  124. Tedder, M. E., et al. (2009). Stabilized collagen scaffolds for heart valve tissue engineering. Tissue Engineering. Part A, 15(6), 1257–1268.

    Article  PubMed  CAS  Google Scholar 

  125. Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews. Molecular Cell Biology, 7(2), 131–142.

    Article  PubMed  CAS  Google Scholar 

  126. Thiery, J. P., et al. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890.

    Article  PubMed  CAS  Google Scholar 

  127. van Lieshout, M. I., et al. (2006). Electrospinning versus knitting: Two scaffolds for tissue engineering of the aortic valve. Journal of Biomaterials Science, Polymer Edition, 17(1–2), 77–89.

    Article  Google Scholar 

  128. Vesely, I. (2005). Heart valve tissue engineering. Circulation Research, 97(8), 743–755.

    Article  PubMed  CAS  Google Scholar 

  129. Wilson, C. A., et al. (1998). Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. Journal of Virology, 72(4), 3082–3087.

    PubMed  CAS  Google Scholar 

  130. Yacoub, M. H., & Takkenberg, J. J. (2005). Will heart valve tissue engineering change the world? Nature Clinical Practice. Cardiovascular Medicine, 2(2), 60–61.

    Article  PubMed  CAS  Google Scholar 

  131. Yamanami, M., et al. (2010). Preparation of in-vivo tissue-engineered valved conduit with the sinus of Valsalva (type IV biovalve). Journal of Artificial Organs, 13(2), 106–112.

    Article  PubMed  Google Scholar 

  132. Yamanami, M., et al. (2010). Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: A pilot study in pulmonary valve replacement in a beagle model. Circulation, 122(11 Suppl), S100–S106.

    Article  PubMed  Google Scholar 

  133. Ye, Q., et al. (2000). Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. European Journal of Cardio-Thoracic Surgery, 17(5), 587–591.

    Article  PubMed  CAS  Google Scholar 

  134. Zilla, P., et al. (2008). Prosthetic heart valves: Catering for the few. Biomaterials, 29(4), 385–406.

    Article  PubMed  CAS  Google Scholar 

  135. Zoltan-Jones, A., et al. (2003). Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. Journal of Biological Chemistry, 278(46), 45801–45810.

    Article  PubMed  CAS  Google Scholar 

  136. Zund, G., et al. (1997). The in vitro construction of a tissue engineered bioprosthetic heart valve. European Journal of Cardio-Thoracic Surgery, 11(3), 493–497.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

YWC was supported by NIH Common Fund grants (EB008539 and HL092551). AK was supported by NIH (DE019024, HL092836, and HL099073). WDM was supported by the American Heart Association (0835496N and 09GRNT2010125), Wallace H. Coulter Foundation (Early Career Award), NSF (1055384), and NIH (HL094707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. David Merryman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sewell-Loftin, M.K., Chun, Y.W., Khademhosseini, A. et al. EMT-Inducing Biomaterials for Heart Valve Engineering: Taking Cues from Developmental Biology. J. of Cardiovasc. Trans. Res. 4, 658–671 (2011). https://doi.org/10.1007/s12265-011-9300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9300-4

Keywords

Navigation